Minimum Akışkanlaştırma Hızının Belirlenmesi Üzerine Deneysel Bir Çalışma

Pnömatik taşıma sistemleri, farklı türde malzemelerin taşınabilmesi nedeniyle çeşitli endüstriyel ortamlarda yaygın olarak kullanılmaktadır. Tozların ve düzensiz katı parçacıkların taşınması için ortalama parçacık boyutu, yoğunluk ve parçacıklar arası kohezyon kuvvetlerine dayalı bazı akış modları sınıflandırmaları vardır. Bu çalışmada, pnömatik taşıma sistemlerindeki akış modlarını belirlemek için dikey (test durumu 1), yatay (test durumu 2) ve sürekli taşıma test durumu olmak üzere üç farklı durum oluşturulmuş ve incelenmiştir. Bu üç test düzeneğinde 200 kg/m3 < ρblp < 2400 kg/m3 ve 150 μm < dp < 2750 μm aralığında yedi katı parçacık kullanılmıştır. Dikey test düzeneğinde kararsız bölge ve akışkanlaşmış yoğun faz oluşur, ardından yatay test düzeneğinde dalgalı akış ve tıkaç akışı gözlenir ve son olarak sürekli taşıma test durumunda görsel olarak tıkaç akışı ve seyrek fazlı akış oluşur. Son olarak, elde edilen tüm veriler, pnömatik taşıma sistemlerinde akış modlarına göre sınıflandırma için dikkate alınmıştır. Gözlemlenen akış modları, tüm test durumlarına göre dikkate alınmış ve tablo haline getirilmiştir.

An Experimental Study on the Determination of Minimum Fluidization Velocity

Pneumatic conveying systems are widely used in a variety of industrial settings since different types of materials can be conveyed. There are some classifications of flow modes for conveying of powders and bulk solid particles based on mean particle size, density, and inter particle cohesion forces. In this paper, three different cases which are vertical (test case 1), horizontal (test case 2) and continuous conveying test case are constructed and considered in order to determine the flow modes in pneumatic conveying systems. Seven solid particles are used with the range of 200 kg/m3 < ρblp < 2400 kg/ m3 and 150 μm < dp < 2750 μm in these three cases. In vertical test set-up unstable zone and fluidized dense phase is occurred, then in the horizontal test set-up slug flow and plug flow is observed and lastly plug flow and dilute phase is occurred visually in continuous conveying test case. Finally, all obtained data are considered for the classification according to flow modes in pneumatic conveying systems. The observed flow modes are considered and tabulated with respect to all test cases.

___

  • [1] D. Geldart, “Types of Gas Fluidization,” Powder Technology, vol.7, pp. 285-292, 1973.
  • [2] D. Geldart, Powder Technology, vol. 6, pp. 201, 1972.
  • [3] G. Dixon, “The Impact of Powder Properties on Dense Phase Flow,” In Proceedings of the international conference on pneumatic conveying, 1979.
  • [4] O Molerus, “Proc. Intern. Symp. on Fluidization,” Eindhoven, Netherlands Univ. Press Amsterdam, 1967.
  • [5] O. Molerus, “Interpretation of Geldart’s Type A, B, C and D Powders Taking into Account Interparticle Cohesion Force,” Powder Technology, vol. 33, pp. 81-87, 1982.
  • [6] O. Molerus, “Chem. Engng. Science 35,” Vol. 6, pp. 1331, 1980.
  • [7] N. J. Mainwaring, A.R. Reed, “Permeability and Air Retention Characteristics of Bulk Solid Materials in Relation to Modes of Dense Phase Pneumatic Conveying,” Bulk Solids Handling, vol. 7(3), pp. 415-425, 1987.
  • [8] C. Fargette, M.G. Jones, G. Nussbaum, “Bench Scale Tests Assessment of Pneumatic Conveying Behavior of Powders,” Powder Handling and Processing, vol. 9(2), pp. 103-110, 1997.
  • [9] L. Sanchez, N. Vasquez, G. E. Klinzing, S. Dhopdakar, “Characterization of Bulk Solids to Assess Dense Phase Pneumatic Conveying,” Powder Technology, vol. 138, pp. 93-117, 2003.
  • [10] R. Pan, P. Wypych, I. Frew, “6th Intl. Conf. on Bulk Materials, Storage, Handling and Transport,” Wollongong, AU, September, 1998.
  • [11] R. Pan, I. Frew, D. Cook, “I-Mechanical Engineering,” 65 (C566/044/2000).
  • [12] R. Pan, “Intl. Conf. on Bulk Materials,” Storage, Handling and Transport, Newcastle, AU, July, 1995.
  • [13] R. Pan, “Material Properties and Flow Modes in Pneumatic Conveying,” Powder Technology, vol. 104, pp. 157-163, 1999.
  • [14] K. C. Williams, M. G. Jones, “Classification Diagrams for Dense-Phase Pneumatic Conveying,” Powder Handling and Processing, vol. 15(6), pp. 368-373, 2003.
  • [15] M. G. Jones, K. C. Williams, “Predicting the Mode of Flow in Pneumatic Conveying Systems,” Particuology, vol. 6, pp. 289-300, 2008.
  • [16] R. Jackson, “Trans. Inst. Chem. Engrs,” vol. 41, pp. 13, 1963.
  • [17] R L. Pigford, T. Baron, “Ind. Eng. Chem. Fundamentals,” vol. 4, pp. 81, 1965.
  • [18] L. Davies, J. F. Richardson, “Transactions of the Institution of Chemical Engineers,” vol. 44, T293, 1966.
  • [19] H. Rumpf, “Chemie-kg-Technik,” vol. 42, pp. 538, 1970.
  • [20] H. Krupp, “Adv. in Coil. and Interf. Sci,” vol. 1, pp. 2, 1967.
  • [21] K. B. Mathur, “Chapter 17. Spouted Beds, in Davidson J.F., and Harrison D. H. Fluidization,” Academic Press, London and Newyork, 1971.
  • [22] A. J. Chambers, S. Keys, R. Pan, “The Influence of Material Properties on Conveying Characteristics,” In Proceedings of the 6th international conference on bulk materials storage, handling and transportation, pp. 309-319, 1998.
  • [23] M. G. Jones, U. K. Mills, “Product classification for pneumatic conveying,” Powder Handling and Processing, Vol. 2, pp. 117–122, 1990.
  • [24] B. Mi, “Low Velocity Pneumatic Transportation of Bulk Solids,” PhD Dissertation, Wollongong University, AU, 1994.
  • [25] O. C. Kennedy, “6th International Conference on Bulk Materials Storage, Handling and Transportation,” Wollongong, Australia, 8 – 30 September, 1998.
  • [26] D. Geldart, A. C. Y. Wong, “Chemical Engineering Science” Vol. 40, pp. 653–661, 1985.
  • [27] M. Kwauk, “Fluidization: Idealized and Bubbleless, with Applications,” Ellis Horwood, New York, 1992.
  • [28] L. Sanchez, “Characterization of Bulk Solids for Dense Phase Pneumatic Conveying,” MS Thesis, University of Pittsburgh, 2001.
  • [29] S. Ergun, “Fluid Flow Through Packed Columns,” Chemical Engineering Progress, vol. 48, pp. 89-94, 1952.
  • [30] A. Tozlu, E. Özahi, A. İ. Kutlar, M. Ö. Çarpınlıoğlu, “Modes of Flow in Pneumatic Conveying Systems,” FLUIDS-HEAT’12, Recent Researches in Applied Mechanics, Greece, vol. 1, pp. 51-57, March, 2012.
  • [31] A. Tozlu, M. Ö. Çarpınlıoğlu, “An Experimental Test Set-up and the Range of Study for Determination of Flow Modes in Pneumatic Conveying Systems,” Recent Advances in Continuum Mechanics Hydrology and Ecology, Rhodes Islands, vol.14, pp. 61-66, 2013.
  • [32] M. Ö. Çarpınlıoğlu, “An Analysis of Flow Mechanics through Packed-Fluidized Beds of a Variety of Solid Particles: A Methodology for the Determination of Flow Modes in Pneumatic Conveying Systems,” Recent Advances in Continuum Mechanics Hydrology and Ecology, Rhodes Islands, vol.14, pp. 71-76, 2013.
  • [33] M. Ö. Çarpınlıoğlu, “An analysis on flow modes in pneumatic transport lines, Project Report,” BAP University of Gaziantep MF 12.05, 2014.
  • [34] A. Tozlu, “An Analysis on Flow Modes in Pneumatic Conveying Systems,” M.Sc. Thesis, University of Gaziantep, 2014.
  • [35] ANSI/ASME PTC 19.1-1985 Part 1, Measurement Uncertainty (Available from ASME Order Dept., 22 Law Drive, Box 2300, Fairfield, New Jersey 07007-2300), 1986.