Yongalevha Üretimi İçin Elek Makinesi Atıklarının Kullanımı

Bu çalışmada, yongalevha üretiminde hızlı büyüyen bir tür olan Ailanthus Altissima (Mill.) Swingle odunu ve yongaların elenmesinde oluşan atıklar kullanılmıştır kullanılmıştır. Bu çalışmanın amacı elek makinası atıklarının kullanımının (toz ve kaba yonga) yongalevhanın mekanik (eğilme direnci, elastikiyet modülü ve çekme direnci), fiziksel (kalınlığına şişme) ve yüzey kalitesi (pürüzlülük) ve formaldehit emisyonu üzerine etkilerini belirlemektir. % 10 toz kullanımı yüzey pürüzlülüğü, kalınlığına şişme ve mekanik özellikleri pozitif yönde etkilemiştir. % 20 toz kullanımı mekanik direnç özellikleri, yüzey pürüzlülüğü ve formaldehit emisyonunu istatistiksel olarak etkilememiştir. Panellerin kalınlığına şişme değerleri % 20 toz kullanımı ile iyileşmiştir.  Toz kullanımının % 30’a çıkması ile mekanik direnç özellikleri ve yüzey düzgünlüğü da zayıf olmasına neden olmuştur. % 10 kaba yonga kullanımı yongalevhanın kalite özelliklerini istatistiksel olarak etkilememiştir. Kaba yonga kullanımının % 10’dan % 20 ve % 30’a çıkarılması yongalevhaların mekanik direnç özellikleri ve kalınlığına şişme değerlerini negatif yönde etkilemiştir. Sonuçlar hızlı büyüyen bir tür olan Ailanthus Altissima (Mill.) Swingle odununun yongalevha üretiminde kullanılabileceğini göstermiştir. Toz (dış ve orta tabaka) ve kaba yonga kullanımı (orta tabaka) sırasıyla % 20 ve % 10’u aşmamalıdır.

Use of Screening Machine Wastes for Manufacturing of Particleboard Composite

In this study, fast grown Ailanthus Altissima (Mill.) Swingle wood and screening machine wastes occurred during the particleboard manufacturing were used for particleboard manufacturing. The purpose of this study is to determine the effects of screening machine wastes (dust and rude particles) usage on the mechanical (modulus of rupture, modulus of elasticity and internal bond strength), physical (thickness swelling) and surface quality (roughness), and formaldehyde emission of particleboard. 10% dust usage positively affected the surface roughness, thickness swelling, and mechanical properties of particleboard panels. 20 % dust usage did not statistically affect the mechanical strength properties, surface roughness, and formaldehyde emission. Thickness swelling of the panels was improved by using 20% dust. Increasing dust usage to 30% caused poorer the mechanical strength properties and surface smoothness. 10% rude particle usage did not statistically influence the quality properties of particleboard. Increasing rude particle usage from 10% to 20 % and 30% negatively influenced the mechanical resistance properties and thickness swelling of the particleboards. The results showed that fast grown Ailanthus Altissima (Mill.) Swingle wood can be used particleboard manufacturing. Dust (in surface and core layers) and rude particles (in core layer) usage should not exceed 20% and 10 %, respectively.

___

  • Akbulut T (1995). Effects of Various Factors on Properties of Horizontalppressed Particleboard. PHd
  • Dissertion Thesis, İstanbul University, Institute of Natural Sciences. İstanbul (in Turkish).
  • Bardak S, Nemli G, Sari B, Baharoğlu M Zekoviç E (2010). Manufacture and Properties Composite from Waste Sanding Dusts. High Temperature Materials and Process, 29: 159-168.
  • Bekhta P, Lyutyy P, Hiziroglu S, Ortynska G (2016). Properties of Composite Panels Made from Tetra-Pak and Polyethylene Waste Material. Journal of Polymers and the Environment, 24: 159-165.
  • Carvalho AG, De Andrade BG, Cabral CPT, Vital BR (2015). Effect of Adding Yerba Mate Pruning Residues in Particleboard Panels. Revistra Arvore, 39: 209-214.
  • Cravo JCM, Sartori DD, Fiorelli J, Balireio JCD, Savastano H (2015). Particleboards of Agroindustrial Wastes. Ciencia Florestal, 25: 721-730.
  • EN 310 (1993). Wood based panels, Determination of Modulus of elasticity in bending and bending strength, EN, Brussels.
  • EN 317 (1993). Particleboard and fiberboards, determination of tensile strength perpendicular to the plane of the board, EN, Brussels.
  • EN 319 (1993). Particleboards and fiberboards, determination of tensile strength perpendicular to the plane of the board, EN, Brussels.
  • EN 120-1 (1993). Wood based panels, determination of formaldehyde content-extraction method called perforator method, EN, Brussels.
  • EN 312 (2005). Particleboards-specifications, EN, Brussels-Belgium.
  • Erakhruman AA, Areghan SE, Ogunleye MB (2008). Selected Physic-Mechanical Properties of Cement Bonded Particleboard Made from Pine Sawdust-Coir Mixture. Scientific Research and Essays, 3: 197-203.
  • Gamage N, Setunda S (2015). Modelling of Vertical Density Profile of Particleboard, Manufactured from Hardwood Sawmill Residue. Wood Material Science & Engineering, 10: 57-67.
  • He X, Wang DF, Zhang YL, Tang Y (2016). Manufacturing Technology and Parameter Optimization for Composite Board from Corn Stalk Rinds. Bioresources, 11: 4564-4578.
  • Hendarto B, Shayan E, Ozarska B, Carr R (2006). Analysis of Roughness of A Sanded Wood Surface. International Journal of Advanced Manufacturing Technology, 28: 775-780.
  • ISO 4287 (1997). Geometrical product specifications (GPS)-surface texture; profile method terms, definations and surface texture parameters, ISO Geneva.
  • Keskin H, Kucuktuvek MC, Guru M (2015). The Potential of Poppy (Papaver Somniferum Linnaeus) Husk for Manufacturing Wood-Based Particleboards. Construction and Building Materials, 95: 224-31.
  • Khazaeian A, Ashori A, Dizaj MY (2015). Suitability of Sorghum Stalks Fibers for Production of Particleboard. Carbohydrate Polymers, 120: 15-21.
  • Klimak P, Meinlschmidt P, Wimmer R, Plinke B, Schirp A (2016). Using Sunflower (Helianthus Annuus L.), Topinambour (Helianthus Tuberosus L.) and Cup-Plant (Silphium Perfoliatum L.) Stalks as Alternative Raw Materials for Particleboards. Industrial Crops and Products, 92: 157-164.
  • Kord B, Zare H, Hosseinzadeh A (2016). Evaluation of The Mechanical and Physical Properties of Particleboard Manufactured from Canola Straws. Maderas-Ciencia Y Tecnologia, 18: 9-18.
  • Kurokochi Y, Sato M (2015). Effect of Surface Structure, Wax and Silica on The Properties of Binderless Board Made from Rice Straw. Industrial Crops and Products, 77: 949-953.
  • Liu JY, Mcnatt JD (1991). Thickness Swelling and Density Variation in Aspen Flakeboard. Wood Science and Technology, 82: 52-33.
  • Nasser RA, Salem MZM, Al-Mefarrej HA, Aref IM (2016). Use of Tree Pruning Wastes For Manufacturing of Wood Reinforced Cement Composites. Cement & Concrete Composites, 72: 246-256.
  • Nazerian M, Beyki Z, Gargarii RM, Kool F (2016). The Effect of Some Technological Production Variables on Mechanical and Physical Properties of Particleboard Manufactured from Cotton Stalks. Maderas-Ciencia Y Tecnologia, 18: 67-78.
  • Oliveira SL, Mendes RF, Mendes LM, Freire TP (2016). Particleboard Panels Made from Sugarcane Bagasse: Characterization For Use In The Furniture Industry. Materials Research-Ibero-American Journal of Materials, 19: 914-22.
  • Rios PD, Vieria HC, Stupp AM, Kniess DD, Borba MH, Da Cunha AB (2015). Physical and Mechanical Review of Particleboard Composed of Dry Particles of Branches of Araucaria Angustifolia (Bertol.) Kuntze and Wood of Eucalyptus Grandis Hill Ex Maiden. Scientia Forestalis, 43: 283-89.
  • Rokiah H, Wan NWNA, Othman S (1987). Evaluations Of Some Properties Of Exterior Particleboard Made From Oil Palm Biomass. J. Compos. Mater, 45: 1659-1665.
  • Sam-Brew S, Smith GD (2015). Flax and Hemp Fiber-Reinforced Particleboard. Industrial Crops and Products, 77: 940-48.
  • Scatoloni MV, Protasio TD, Mendes RF, Mendes LM (2015). Thermal Stability of Pinus Oocarpa and Maize Cob Particleboards. Ciencia E Agrotecnologia, 39: 348-354.
  • Shuler CE, Kelly RA (1976). Effect of Flake Geometry on Mechanical Properties of Eastern Spruce Flake-Type Particleboard. Forest Prod. J, 26: 24-28.
  • Sogutlu C, Dongel, N, (2007). Tensile Shear Strengths of Some Local Woods Bonded with Polyvinyl Acetate and Polyurethane Adhesives. Journal of Polytechnic, 10(3): 287-293
  • Wang D, Sun XS (2002). Low Density Particleboard from Wheat Straw and Corn Pith. Ind. Crops Products, 15: 47-50.
  • Wang JG, Hu YC (2016). Novel Particleboard Composites Made From Coir Fiber and Waste Banana Stem Fiber. Waste Biomass Valorization, 7:1447-1458.
  • Wang SY, Yang TH, Lin LT, Lin CJ, Tsai MJ (2008). Fire Retardant Treated Low Formaldehyde Emission Particleboard Made from Recycled Wood Waste. Bioresource Technology, 99: 2072-2077.
  • Yang TH, Cheng JL, Song YW, Ming JT (2007). Characteristics of Particleboard Made from Recycled Wood Waste Chips Impregnated With Phenol Formaldehyde Resin. Building and Environment, 42: 189-195.
  • Yeniocak M, Goktas O, Ozen E, Gecgel A (2016). Improving Mechanical and Physical Properties of Particleboard Made from Vine Prunings By Addition Reinforcement Materials. Wood Research, 61: 265-74.
  • Zor M, Sozen E, Bardak T. (2016). Mechanical Performances of Laminated wood and Determination of Deformation in The Bending Test with The Aid of Image Analysis Method. Journal of Bartin Faculty of Forestry, 18(2), 126-136.
Bartın Orman Fakültesi Dergisi-Cover
  • ISSN: 1302-0943
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1998
  • Yayıncı: Bartın Üniversitesi Orman Fakültesi