Türkiye’nin Önemli İğne Yapraklı Ağaç Türleri İçin BEF-BCEF Hesaplamaları

Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi (UNFCCC)’ne taraf olan ülkelerin her biri karbon stok gelişim düzeyini belirlemek amacıyla kendi ülkeleri için çeşitli ulusal raporlar hazırlamak ve iletmekle yükümlüdür. Bu amaçla kullanılan odunsu biyokütlenin hesabında genel kabul görmüş iki yaklaşım bulunmaktadır. Birincisi, allometrik eşitlikler, ikincisi ise biyokütle belirlemesinde Biyokütle Genişletme Faktörleri (BEF) ya da Biyokütle Çevirme ve Genişletme Faktörlerinin (BCEF) kullanımıdır. Türkiye’de zaman içinde çeşitli araştırmacılar tarafından BEF ve BCEF değerleri hesaplanmıştır. Fakat bu katsayılar genellikle türetilmiş tablo değerlerinden elde edilmiştir. Bu çalışmada ise Türkiye’nin önemli iğne yapraklı türleri için ağaç bileşenlerine ait BEF ve BCEF katsayıları arazi verilerinden elde edilen gerçek ölçüm değerleri kullanılarak belirlenmiştir. Ayrıca ibre kuru madde içeriği (LDMC) ve odun yoğunluk değerleri de (WD) hesaplanmıştır. Toprak üstü ortalama BEF değeri iğne yapraklı ağaçlar için 1,374 olarak belirlenmiştir.

BEF-BCEF Calculations for Turkey's Impotant Coniferous Species

Countries that are parties to the United Nations Framework Convention on Climate Change (UNFCCC) are obliged to prepare and deliver various national reports in order to determine the level of carbon stock development of the situation in their countries. There are two generally accepted approaches to calculate the woody biomass used for this purpose. The first is the allometric equations, the second is the use of Biomass Expansion Factors (BEF) or Biomass Conversion and Expansion Factors (BCEF) in biomass determination. BEF and BCEF values are calculated by various researchers over time in Turkey. However, these coefficients are generally obtained from derived table values. In this study, BEF and BCEF coefficients belonging to the tree components were determined using real measurement values obtained from plot data for important coniferous species of Turkey. In addition, leaf dry matter content (LDMC) and wood density values (WD) were also calculated. The average above ground BEF value was determined as 1.374 for coniferous trees.

___

  • 1.Aholoukpe, H., Dubos, B., Flori, A., Deleporte, P., Amajdi, G., Choette, J.L., Blavet, D. (2013).Estimating above ground biomass of oil palm: Allometric equations for estimating frond biomass. ForestEcology and Management, 292,122-129.
  • 2.Ali, A. M., Darvishzadeh, R., Skidmore, A. K., van Duren, I., Heiden, U., & Heurich, M. (2016).Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specificleaf area in mixed mountainous forest. International Journal of Applied Earth Observation andGeoinformation, 45, 66-76.
  • 3.Asan, Ü. (1995). Global iklim değişimi ve Türkiye ormanlarında karbon birikimi. İstanbul ÜniversitesiOrman Fakültesi Dergisi, 45(1-2), 23-38.
  • 4.Ünal, A. (2011). Türkiye ormanlarındaki yıllık karbon stok değişimi trendinin irdelenmesi ve 2023 yılındakidurumun kestirilmesi. I. Ulusal Akdeniz Orman ve Çevre Sempozyumu Bildiriler Kitabı s.930-944.
  • 5.Blujdea, V.N.B., Pilli, R., Dutca, I., Ciuvat, L., Abrudan, I.V. (2012). Allometric biomass equations foryoung broadleaved trees in plantations in Romania. Forest Ecology and Management, 264:172-184.
  • 6.ÇOB (2006). Arazi Kullanımı, Arazi Kullanım Değişikliği ve Ormancılık (LULUCF) Çalışma GrubuRaporu, Ankara
  • 7.Durkaya A, Durkaya, B., Ulu Say, Ş. (2016). Below-and above ground biomass distribution of young Scotspines from plantations and natural stands. BOSQUE, 37(3), 509-518, DOI: 10.4067/S0717-92002016000300008.
  • 8.Durkaya, A., Durkaya, B., Makineci, E., Orhan, İ. (2015). Turkish Pines’ Aboveground Biomass andCarbon Storage Relationships. Fresenius Environmental Bulletin, 24 (11), 3573-3583.
  • 9.Durkaya, B., Durkaya A., Kocaman M. (2017). Carbon stock change; Bolu Sarıalan forest enterprise.Bartın Orman Fakültesi Dergisi, 19(1), 268-275.
  • 10. Durkaya, B., Durkaya, A., Yagcı, H. (2019). Biomass Equations In Natural Black Pines. FreseniusEnvironmental Bulletin, 28 (2A/2019), 1132-1139.
  • 11.Dutca, I., Abrudan, I. V., Stancioiu, P. T., & Blujdea, V. (2010). Biomass conversion and expansion factorsfor young Norway spruce (Picea abies (L.) Karst.) trees planted on non-forest lands in Eastern Carpathians.Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 286.
  • 12.Durkaya, B., Durkaya, A., Makineci, E., Karabürk, T. (2013). Estımatıng Above-Ground Bıomass andCarbon Stock of Indıvıdual Trees in Uneven-Aged Uludag Fir Stands. Fresenius Environmental Bulletin. 22(2), 428-434.
  • 13.Durkaya, B., Durkaya, A., Makineci, E., Ülküdür,M (2013). Estimation of Above-Ground Biomass andsequestered Carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey. iForest-Biogeosciences andForestry. 6:278-284. DOI:10.3832/ifor0899-006.
  • 14.Durkaya, B., Durkaya, A., Onal, G., Kaptan, S. (2018). Evaluation of the effects of various factors onaboveground and belowground biomass storage capacity of Rhododendron ponticum. BOSQUE, 39(1), 95-106.
  • 15.Durkaya, B.,Varol, T., Durkaya, A. (2014). Determination of carbon stock changes: biomass models orbiomass expansion factors. Fresenius Environmental Bulletin. 23 (3), 774-781.
  • 16.Garnier, E., Laurent, G., Bellmann, A., Debain, S., Berthelier, P., Ducout, B., ... & Navas, M. L. (2001).Consistency of species ranking based on functional leaf traits. New Phytologist, 152(1), 69-83.
  • 17.Güner, S. T., Çömez, A. (2017). Biomass Equations And Changes in Carbon Stock in Afforested Black Pine(Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) Stands in Turkey. Fresenius EnvironmentalBulletin, 26(3), 2368-2379.
  • 18.Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., ... &Lienkaemper, G. W. (1986). Ecology of coarse woody debris in temperate ecosystems. In Advances inecological research (Vol. 15, pp. 133-302). Academic Press.
  • 19. Illa, E., Ninot, J. M., Anadon-Rosell, A., & Oliva, F. (2017). The role of abiotic and biotic factors infunctional structure and processes of alpine subshrub communities. Folia Geobotanica, 52(2), 199-215.
  • 20. IPCC (2003). Good practice guidance for land use, land-use change and forestry.
  • 21. IPCC (2006). Guidelines for national greenhouse gas inventories, prepared by the National Greenhouse GasInventories Programme.
  • 22. Jagodziński, A. M., Zasada, M., Bronisz, K., Bronisz, A., & Bijak, S. (2017). Biomass conversion andexpansion factors for a chronosequence of young naturally regenerated silver birch (Betula pendula Roth)stands growing on post-agricultural sites. Forest Ecology and Management, 384, 208-220.
  • 23. Luo, Y., Zhang, X., Wang, X., & Ren, Y. (2014). Dissecting variation in biomass conversion factors acrossChina’s forests: implications for biomass and carbon accounting. PloS one, 9(4), e94777.
  • 24.Mahmood, H., Siddique, M. R. H., Islam, S. Z., Abdullah, S. R., Matieu, H., Iqbal, M. Z., & Akhter, M.(2020). Applicability of semi-destructive method to derive allometric model for estimating abovegroundbiomass and carbon stock in the Hill zone of Bangladesh. Journal of Forestry Research, 31(4), 1235-1245.
  • 25.Marklund, L. G., & Schoene, D. I. E. T. E. R. (2006). Global assessment of growing stock, biomass andcarbon stock. Forest Resources Assessment Programme Working paper, 106.
  • 26.Neumann, M., Moreno, A., Mues, V., Härkönen, S., Mura, M., Bouriaud, O., Lang, M., Achten, W.M.J.,Thivolle-Cazat, A., Bronisz, K., Merganič, J., Decuyper, M., Alberdi, I., Astrup, R., Mohren, F.,Hasenauer, H., (2016). Comparison of carbon estimation methods for European forests. Forest Ecology andManagement, 361, 397–420.
  • 27. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., ... & Wagner, F. (2003). Goodpractice guidance for land use, land-use change and forestry. Good practice guidance for land use, land-usechange and forestry.
  • 28. Poorter, H., Jagodzinski, A. M., Ruiz‐Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., & Sack, L. (2015).How does biomass distribution change with size and differ among species? An analysis for 1200 plant speciesfrom five continents. New Phytologist, 208(3), 736-749.
  • 29. Petersson, H., Holm, S., Ståhl, G., Alger, D., Fridman, J., Lehtonen, A., ... & Mäkipää, R. (2012).Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes inliving biomass–A comparative study. Forest Ecology and Management, 270, 78-84.
  • 30. Shipley, B., Vu, T. T. (2002). Dry matter content as a measure of dry matter concentration in plants and theirparts. New Phytologist, 153(2), 359-364.
  • 31. Teobaldelli, M., Somogyi, Z., Migliavacca, M., & Usoltsev, V. A. (2009). Generalized functions of biomassexpansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecologyand Management, 257(3), 1004-1013.
  • 32. Tobin, B., Nieuwenhuis, M. (2007). Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.)Carr.) in Ireland. European Journal of Forest Research, 126(2), 189-196.
  • 33. Tolunay, D. (2011). Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystemsof Turkey. Turkish Journal of Agriculture and Forestry, 35(3), 265-279.
  • 34. Tolunay, D. (2012). Bolu-Aladağ’daki genç sarıçam meşcereleri için oluşturulan bitkisel kütle denklemlerive katsayıları. İstanbul Üniversitesi Orman Fakültesi Dergisi, 62(2), 97-111.
  • 35. Tolunay, D. (2019). Biomass factors used to calculate carbon storage of Turkish forests/Turkiye'deormanlardaki karbon birikiminin hesaplamasinda kullanilabilecek bitkisel kutle katsayilari. Forestist, 69(2),145-156.
  • 36. Tolunay, D., Çömez, A. (2008). Türkiye ormanlarinda toprak ve ölü örtüde depolanmiş organik karbonmiktarlari. Hava Kirliliği ve Kontrolü Ulusal Sempozyumu Bildiri Kitabı, 750-765. 22-25 Ekim 2008, Hatay.
  • 37. Zhang, B., Lu, X., Jiang, J., DeAngelis, D. L., Fu, Z., & Zhang, J. (2017). Similarity of plant functionaltraits and aggregation pattern in a subtropical forest. Ecology and Evolution, 7(12), 4086-4098.