Avrupa Kıtasında Karışık Meşcerelerin Durumu ve 18 Yıllık Değişiminin İncelenmesi

Küresel iklim değişikliği ile mücadele etmede ve dünyamızın korunmasında ormanlar önemli bir rol oynamaktadır. Ormanların durumunun ve değişim trendlerinin ortaya çıkarılması, çevresel sorunların çözümü ve önüne geçilebilmesi adına oldukça önemlidir. Bu sebeple, bu çalışmada Avrupa kıtasının karışık ormanlarının durum ve 18 yıl içerisindeki değişimleri incelenmiştir. Değişim analizleri için 2000, 2006, 2012 ve 2018 yıllarına ait CORINE arazi örtüsü veri setleri kullanılmıştır. 2018 yılı itibari ile Avrupa kıtasında yaklaşık 31 milyon hektarlık karışık orman varlığı tespit edilmiş ve yaklaşık 2.8 milyon hektarlık karışık ormanın son 18 yıl içerisinde kaybedildiği görülmüştür. 2006-2012 yılları arasındaki değişimin bu azalımda temel etken olduğu gözlemlenmiştir. Ayrıca, Finlandiya, Almanya ve Türkiye’nin, bahsi geçen 18 yıllık süreç içerisinde, olumsuz yönde en çok etkilenen ülkeler olduğu görülmüştür.

Investigation of the 18-Year Status and Changes of Mixed Stands in Europe

Forests play essential roles for the protection of the earth when we are struggling with global climate change. It is necessary to examine the current status of the forests and their changes over time in order to determine the precautions to be taken in the future to overcome the environmental issues associated with the climate change. For this reason, the current status and the 18-year change of European Continent mixed forest stands in acreage were examined in this article. The Coordination of Information on the Environment (CORINE) land cover datasets belonging to 2000, 2006, 2012 and 2018 were used for the analyses in the study. Approximately 2.8 million hectares of mixed forestland have been lost in the last eighteen years in Europe, which has approximately 31 million hectares of mixed forest stands as of 2018. It was determined that this decrease was mostly caused by the change during the period of 2006-2012. In addition, it was revealed that mixed forests of Finland, Germany and Turkey dramatically suffered a high rate of destruction in the last eighteen years as a result of this study.

___

  • 1.Atalay, I., & Efe, R. (2010). Structural and distributional evaluation of forest ecosystems in Turkey. Journalof Environmental Biology, 31(1), 61.
  • 2.Brockway, D.G. and Outcalt, K.W. (1998). Gap-phase regeneration in longleaf pine wiregrass ecosystems.Forest Ecology and Management, 106(2-3), 125-139.
  • 3.Cavard. X.. Macdonald. S. E.. Bergeron. Y.. & Chen. H. Y. (2011). Importance of mixedwoods forbiodiversity conservation: evidence for understory plants. songbirds. soil fauna. and ectomycorrhizae innorthern forests. Environmental Reviews. 19(NA). 142-161.
  • 4.Dalin, P., Kindvall, O. & Björkman, C. (2009). Reduced Population Control of an Insect Pest in ManagedWillow Monocultures. PLoS ONE. 4(5).
  • 5.Dittmar, C., Zech, W. and Elling, W. (2003). Growth variations of common beech (Fagus sylvatica L.)under different climatic and environmental conditions in Europe – a dendroecological study. Forest Ecologyand Management, 173, 63–78.
  • 6.Elliott, K.J. and Swank, W.T. (1994). Impacts of drought on tree mortality and growth in a mixedhardwood forest. Journal of Vegetation Science, 5(2), 229-236.
  • 7.Fadrique, B., Báez. S., Duque, Á. et al. (2018).Widespread but heterogeneous responses of Andean foreststo climate change. Nature, 564, 207-212.
  • 8.Fanta. J.. & Petřík. P. (2018). Forests and Climate Change in Czechia: an appeal to responsibility. Journalof Landscape Ecology. 11(3). 3-16.
  • 9.Felton, A., Nilsson, U., Sonesson, J., Felton, A. M., Roberge, J. M., Ranius, T., ... & Drössler, L. (2016).Replacing monocultures with mixed-species stands: Ecosystem service implications of two productionforest alternatives in Sweden. Ambio, 45(2), 124-139.
  • 10.González de Andrés, E., Camarero, J.J., Blanco, J.A., Imbert, J.B., Lo, Y.H., Sangüesa-Barreda, G.and Castillo, F.J. (2018). Tree-to-tree competition in mixed European beech–Scots pine forests hasdifferent impacts on growth and water-use efficiency depending on site conditions. J. Ecol., 106, 59–75.
  • 11. Govedar. Z.. Krstić. M.. Keren. S.. Babić. V.. Zlokapa. B.. & Kanjevac. B. (2018). Actual and BalancedStand Structure: Examples from Beech-Fir-Spruce Old-Growth Forests in the Area of the Dinarides inBosnia and Herzegovina. Sustainability. 10(2). 540.
  • 12.Hansen. M. C.. Potapov. P. V.. Moore. R.. Hancher. M.. Turubanova. S. A. A.. Tyukavina. A.. ..... &Kommareddy. A. (2013). High-resolution global maps of 21st-century forest cover change. Science.342(6160). 850-853.
  • 13.Hua. F.. Wang. L.. Fisher. B.. Zeng. X.. Wang. X.. Yu. D. W.. Tang. Y.. Zhu. J. & Wilcove. D. S. (2018).Tree plantations displacing native forests: The nature and drivers of apparent forest recovery on formercroplands in Southwestern China from 2000 to 2015. Biological Conservation. 222. 113-124.
  • 14.Hulvey. K. B.. Hobbs. R. J.. Standish. R. J.. Lindenmayer. D. B.. Lach. L.. & Perring. M. P. (2013).Benefits of tree mixes in carbon plantings. Nature Climate Change. 3(10). 869-874.
  • 15.Kara, F., & Lhotka, J. M. (2020). Climate and silvicultural implications in modifying stand compositionin mixed fir-pine stands. Journal of Sustainable Forestry, https://doi.org/10.1080/10549811.2019.1686030.
  • 16.Kellomäki, S., Rouvinen, I., Peltola, H., Strandman, H., & Steinbrecher, R. (2001). Impact of globalwarming on the tree species composition of boreal forests in Finland and effects on emissions of isoprenoids.Global Change Biology, 7(5), 531-544.
  • 17.Kelty. M. J.. Larson. B. C.. & Oliver. C. D. (Eds.). (2013). The ecology and silviculture of mixed-speciesforests: a festschrift for David M. Smith (Vol. 40). Springer Science & Business Media.
  • 18.Kim. D-H.. Sexton J. O.. Noojioady. P.. Huang. J.. Anand. A.. Channan. S.. Feng. M. & Townshend.J. R. (2014). Global. Landsat-based forest-cover change from 1990 to 2000. Remote Sensing ofEnvironment. 155. 178-193.
  • 19.Kuuluvainen, T. (2002). Natural Variability of Forestsas a Reference for Restoring and ManagingBiological Diversity in Boreal Fennoscandia. Silva Fennica. 36(1). 97-125.
  • 20.Lidskog. R.. & Sjödin. D. (2016). Extreme events and climate change: the post-disaster dynamics of forestfires and forest storms in Sweden. Scandinavian Journal of Forest Research. 31(2). 148-155.
  • 21.Liu. C. L. C.. Kuchma. O.. & Krutovsky. K. V. (2018). Mixed-species versus monocultures in plantationforestry: Development. benefits. ecosystem services and perspectives for the future. Global ecology andconservation. 15. e00419.
  • 22.Margono. B. A.. Potapov. P. V.. Turubanova. S.. Stolle. F.. & Hansen. M. C. (2014). Primary forestcover loss in Indonesia over 2000–2012. Nature climate change. 4(8). 730.
  • 23.Martínez-Fernández. J.. Ruiz-Benito. P.. Bonet. A.. & Gómez. C. (2019). Methodological variations inthe production of CORINE land cover and consequences for long-term land cover change studies. The caseof Spain. International Journal of Remote Sensing. 1-19.
  • 24.Martone. M.. Rizzoli. P.. Wecklich. C.. González. C.. Bueso-Bello. J. L.. Valdo. P.. Schulze. D.. Zink. M.. Krieger. G.. & Moreira. A. (2018). The global forest/non-forest map from TanDEM-X interferometric SAR data. Remote sensing of environment. 205. 352-373.
  • 25.Maucha, G. & Büttner, G. (2005). Validation of the European CORINE Land Cover 2000 database. In theproceedings of the 25th EARSeL Symposium. 449-457. Porto, Portugal, 2005.
  • 26.McCarthy, J. (2001). Gap dynamics of forest trees: a review with particular attention to boreal forests.Environmental reviews, 9(1), 1-59.
  • 27.McDermott. C. L.. Irland. L. C.. & Pacheco. P. (2015). Forest certification and legality initiatives in theBrazilian Amazon: Lessons for effective and equitable forest governance. Forest Policy and Economics. 50.134-142.
  • 28.Morimoto, M., Morimoto, J., Moriya, Y. & Nakamura, F. (2013). Forest restoration following awindthrow: how legacy retention versus plantation after salvaging alters the trajectory of initial recovery.Landscape and Ecological Engineering. 9. 259-270.
  • 29.Mosandl, R., & Küssner, R. (1999). Conversion of pure pine and spruce forests into mixed forests ineastern Germany: some aspects of silvicultural strategy. Page 208.
  • 30.Muller-Kroehling, S., Jantsch, M. C., Fischer, H. S., & Fischer, A. (2014). Modelling the effects ofglobal warming on the ground beetle (Coleoptera: Carabidae) fauna of beech forests in Bavaria, Germany.European Journal of Entomology, 111(1), 35-49.
  • 31.Nadrowski. K.. Wirth. C.. & Scherer-Lorenzen. M. (2010). Is forest diversity driving ecosystem functionand service?. Current Opinion in Environmental Sustainability. 2(1-2). 75-79.
  • 32.Noss, R. F. (1990). Indicators for monitoring biodiversity: a hierarchical approach. Conservation biology,4(4), 355-364.
  • 33. Odabaşı, T., Calışkan, A., & Bozkuş, H.F. (2004). Silvikültür Tekniği. Istanbul University Publications.Publication no: 4459. Istanbul, 314 p.
  • 34. Pádua, C. B. V., & Chiaravalotti, R. (2012). Silviculture and biodiversity. Writings of the Dialogue.Volume 4, 68 p. Rio do Sul, SC : APREMAVI, Brasil. ISBN 978-85-88733-09-1.
  • 35. Pederson, N., Dyer, J.M., McEwan, R.W., Hessl, A.E., Mock, C.J., Orwig, D.A., Rieder, H.E. andCook, B.I. (2014). The legacy of episodic climatic events in shaping temperate, broadleaf forests. Ecol.Monogr., 84, 599–620.
  • 36. Petritan, A.M., Bouriaud, O., Frank, D.C. and Petritan, I.C. (2017). Dendroecological reconstruction ofdisturbance history of an old-growth mixed sessile oak-beech forest. J. Veg. Sci., 28, 117–127.
  • 37. Pretzsch, H., Schütze, G., & Uhl, E. (2013). Resistance of European tree species to drought stress in mixedversus pure forests: evidence of stress release by inter‐specific facilitation. Plant Biology, 15(3), 483-495.
  • 38. Pretzsch. H.. & Schütze. G. (2016). Effect of tree species mixing on the size structure. density. and yieldof forest stands. European journal of forest research. 135(1). 1-22.Pretzsch, H., Schütze, G. and Uhl, E.(2013). Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stressrelease by inter‐specific facilitation. Plant Biology, 15(3), 483-495
  • 39. Pretzsch, H., Forrester, D.I., Bauhus, J. (2017). Mixed-species forests: ecology and management.Springer Nature, Springer-Verlag GmbH, Berlin, Germany. ISBN 978-3-662-54551-5.
  • 40.R Development Core Team. (2010). R: A language and environment for statistical computing. RFoundation for Statistical Computing, Vienna, Austria.
  • 41. Raymond, P., Munson, A. D., Ruel, J. C. and Nolet, P. (2003). Group and single-tree selection cutting inmixed tolerant hardwood–white pine stands: Early establishment dynamics of white pine and associatedspecies. The Forestry Chronicle, 79(6), 1093-1106.
  • 42.Richards, A.E., Forrester, D.I., Bauhus, J., Scherer-Lorenzen, M. (2010). The influence of mixed treeplantations on the nutrition of individual species: a review. Tree Physiol. 30, 1192–1208.
  • 43.Rohner, B., Bigler, C., Wunder, J., Brang, P., Bugmann, H. (2012). Fifty years of natural succession inSwiss forest reserves: changes in stand structure and mortality rates of oak and beech. J. Veg. Sci. 23, 892–905.
  • 44.Rozenbergar, D., Mikac, S., Anic, I. and Diaci, J. (2007). Gap regeneration patterns in relationship tolight heterogeneity in two old-growth beech-fir forest reserves in South East Europe. Forestry, 80, 431–443.
  • 45.Rubio-Cuadrado, Á., Camarero, J. J., Del Rio, M., Sánchez-González, M., Ruiz-Peinado, R., Bravo-Oviedo, A., ... and Montes, F. (2018). Drought modifies tree competitiveness in an oak-beech temperateforest. Forest Ecology and Management, 429, 7-17.
  • 46.Ruzzier, M. K. & de Chernatony, L. (2013). Developing and applying a place brand identity model: Thecase of Slovenia. Journal of Business Research. 66. 45-52.
  • 47. Scaramellini, G. (1996). The picturesque and the sublime in nature and the landscape: writing andiconography in the romantic voyaging in the Alps. Geojournal. 38. 49-57.
  • 48. Scheidel. A.. & Work. C. (2018). Forest plantations and climate change discourses: New powers of‘green’grabbing in Cambodia. Land use policy. 77. 9-18.
  • 49. Shimada. M.. Itoh. T.. Motooka. T.. Watanabe. M.. Shiraishi. T.. Thapa. R.. & Lucas. R. (2014). New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sensing of Environment. 155.13-31.
  • 50.Turner, R. K. & Daily, G.C. (2008). The Ecosystem Services Framework and Natural CapitalConservation. Environmental and Resource Economics. 39. 25-35
  • 51.URL-1 (2019). Copernicus Land Monitoring Services. Corine land cover. Available at:https://land.copernicus.eu/pan-european/corine-land-cover.
  • 52.URL-2 (2019). Copernicus Land Monitoring Services. Definitions. Available at:https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html/index-clc-313.html.
  • 53.Vettenranta, J. (1999). Distance-dependent models for predicting the development of mixed coniferousforests in Finland. Silva Fennica, 33, 51-72.
  • 54.Watson. J. E.. Evans. T.. Venter. O.. Williams. B.. Tulloch. A.. Stewart. C.. ... & McAlpine. C. (2018).The exceptional value of intact forest ecosystems. Nature ecology & evolution. 2(4). 599-610.
  • 55.Wickham. J. D.. Riitters. K. H.. Wade. T. G.. Coan. M.. & Homer. C. (2007). The effect of Appalachianmountaintop mining on interior forest. Landscape ecology. 22(2). 179-187.
Bartın Orman Fakültesi Dergisi-Cover
  • ISSN: 1302-0943
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1998
  • Yayıncı: Bartın Üniversitesi Orman Fakültesi