Translational Functional Neuroimaging in the Explanation of Depression

Translational Functional Neuroimaging in the Explanation of Depression

Translation as a notion and procedure is deeply embodied in medical science and education. Translation includes the possibility to translate data across disciplines to improve diagnosis and treatment procedures. The evidence accumulated using translation serves as a vehicle for reification of medical diagnoses. There are promising, established post hoc correlations between the different types of clinical tools (interviews and inventories) and neuroscience. The various measures represent statistical correlations that must now be integrated into diagnostic standards and procedures but this, as a whole, is a step forward towards a better understanding of the mechanisms underlying psychopathology in general and depression in particular. Here, we focus on functional magnetic resonance imaging studies using a trans-disciplinary approach and attempt to establish bridges between the different fields. We will selectively highlight research areas such as imaging genetics, imaging immunology and multimodal imaging, as related to the diagnosis and management of depression

___

  • 1. WHO, Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. WHO: Geneva; 2011.
  • 2. Rush AJ, Trivedi M, Carmody TJ, Biggs MM, Shores-Wilson K, Ibrahim H, et al. One-year clinical outcomes of depressed public sector outpatients: a benchmark for subsequent studies. Biol Psychiatry 2004;56:46-53.
  • 3. Markova IS. Reification in psychiatry, in Traditions and Innovations in Psychiatry, WPA Regional Meeting Materials. St. Petersburg; 2010:48-9.
  • 4. Stoyanov DS, Machamer PK, Schaffner KF, In Quest for Scientific Psychiatry: towards bridging the explanatory gap. Philosophy, Psychiatry, Psychology 2013;20:261-73.
  • 5. Borgwardt S, Radua J, Mechelli A, Poli PF. Why are psychiatric imaging methods clinically unreliable? Conclusions and practical guidelines for authors, editors and reviewers. Behav Brain Funct 2012.
  • 6. Stojanov D, Korf J, Jonge P. The possibility of evidence-based psychiatry: depression as a case. Clin Epigenetics 2011;2:7-15.
  • 7. Hariri AR, Weinberger DR. Imaging genomics. Br Med Bull 2003;65:259- 70.
  • 8. López-León S, Janssens AC, González-Zuloeta Ladd AM, Del-Favero J, Claes SJ, Oostra BA, et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 2008;13:772-85.
  • 9. YosifovaA, Mushiroda T, Stoianov D, Vazharova R, Dimova I, Karachanak S, et al. Case-control association study of 65 candidate genes revealed a possible association of a SNP of HTR5A to be a factor susceptible to bipolar disease in Bulgarian population. J Affect Disord 2009;117: 87-97.
  • 10. Gatt JM, Burton KL, Williams LM, Schofield PR. Specific and common genes implicated across major mental disorders: A review of meta-analysis studies. J Psychiatr Res 2015;60:1-13.
  • 11. Wurtman RJ. Genes, stress, and depression. Metabolism 2005;54(5 Suppl 1):16-9.
  • 12. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF, et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 2002;297:400-3.
  • 13. Heinz A, Braus DF, Smolka MN, Wrase J, Puls I, Hermann D, et al. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 2005;8:20-1.
  • 14. Pezawas L, Meyer-LindenbergA, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, et al. 5-HTTLPR polymorphism impacts human cingulateamygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005;8:828-34.
  • 15. Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 2011;36:183-206.
  • 16. Clarke H, Flint J, Attwood AS, Munafò MR. Association of the 5- HTTLPR genotype and unipolar depression: a meta-analysis. Psychol Med 2010;40:1767-78.
  • 17. Brockmann H, Zobel A, Schuhmacher A, Daamen M, Joe A, Biermann K, et al. Influence of 5-HTTLPR polymorphism on resting state perfusion in patients with major depression. J Psychiatr Res 2011;45:442-51.
  • 18. Costafreda SG, McCann P, Saker P, Cole JH, Cohen-Woods S, Farmer AE, et al. Modulation of amygdala response and connectivity in depression by serotonin transporter polymorphism and diagnosis. J Affect Disord 2013;150:96-103.
  • 19. Dannlowski U, Ohrmann P, Bauer J, Kugel H, Baune BT, Hohoff C, et al. Serotonergic genes modulate amygdala activity in major depression. Genes Brain Behav 2007;6:672-6.
  • 20. Friedel E, Schlagenhauf F, Sterzer P, Park SQ, Bermpohl F, Ströhle A, et al. 5-HTT genotype effect on prefrontal-amygdala coupling differs between major depression and controls. Psychopharmacology (Berl) 2009;205:261- 71.
  • 21. Margoob MA, Mushtaq D, Murtza I, Mushtaq H, Ali A. Serotonin transporter gene polymorphism and treatment response to serotonin reuptake inhibitor (escitalopram) in depression: An open pilot study. Indian J Psychiatry 2008;50:47-50.
  • 22. Pollock BG, Ferrell RE, Mulsant BH, Mazumdar S, Miller M, Sweet RA, et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 2000;23:587-90.
  • 23. Ng CH, Easteal S, Tan S, Schweitzer I, Ho BK, Aziz S. Serotonin transporter polymorphisms and clinical response to sertraline across ethnicities. Prog Neuropsychopharmacol Biol Psychiatry 2006;30:953-7.
  • 24. Kraft JB, Peters EJ, Slager SL, Jenkins GD, Reinalda MS, McGrath PJ, et al. Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol Psychiatry 2007;61:734-42.
  • 25. Porcelli S, Fabbri C, Serretti A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol 2012;22:239-58.
  • 26. GENDEP Investigators; MARS Investigators; STAR*D Investigators. Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies. Am J Psychiatry 2013;170:207-17.
  • 27. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996;6:243-50.
  • 28. TunbridgeEM, Harrison PJ,Weinberger DR.Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 2006;60:141-51.
  • 29. Massat I, Souery D, Del-Favero J, Nothen M, Blackwood D, Muir W, et al. Association between COMT (Val158Met) functional polymorphism and early onset in patients with major depressive disorder in a European multicenter genetic association study. Mol Psychiatry 2005;10:598-605.
  • 30. Klein M, Schmoeger M, Kasper S, Schosser A. Meta-analysis of the COMT Val158Met polymorphism in major depressive disorder: the role of gender. World J Biol Psychiatry 2016;17:147-58.
  • 31. Opmeer EM, Kortekaas R, van Tol MJ, van der Wee NJ, Woudstra S, van Buchem MA, et al. Influence of COMT val158met genotype on the depressed brain during emotional processing and working memory. PLoS One 2013;8:e73290.
  • 32. Vai B, Riberto M, Poletti S, Bollettini I, Lorenzi C, Colombo C, et al. Catechol-O-methyltransferase Val(108/158)Met polymorphism affects fronto-limbic connectivity during emotional processing in bipolar disorder. Eur Psychiatry 2017;41:53-9.
  • 33. Benedetti F, Dallaspezia S, Colombo C, Lorenzi C, Pirovano A, Smeraldi E. Effect of catechol-O-methyltransferase Val(108/158)Met polymorphism on antidepressant efficacy of fluvoxamine. Eur Psychiatry 2010;25:476-8.
  • 34. Benedetti F, Colombo C, Pirovano A, Marino E, Smeraldi E. The catecholO-methyltransferaseVal(108/158)Met polymorphismaffects antidepressant response to paroxetine in a naturalistic setting. Psychopharmacology (Berl) 2009;203:155-60.
  • 35. Harrisberger F, Spalek K, Smieskova R, Schmidt A, Coynel D, Milnik A, et al. The association of the BDNF Val66Met polymorphism and the hippocampal volumes in healthy humans: a joint meta-analysis of published and new data. Neurosci Biobehav Rev 2014;42:267-78.
  • 36. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003;112:257-69.
  • 37. Montag C, Reuter M, Newport B, Elger C, Weber B. The BDNF Val66Met polymorphism affects amygdala activity in response to emotional stimuli: evidence from a genetic imaging study. Neuroimage 2008;42:1554-9.
  • 38. Lau JY, Goldman D, Buzas B, Hodgkinson C, Leibenluft E, Nelson E, et al. BDNF gene polymorphism (Val66Met) predicts amygdala and anterior hippocampus responses to emotional faces in anxious and depressed adolescents. Neuroimage 2010;53:952-61.
  • 39. Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C, Vahip S. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 2005;255:381-6.
  • 40. Brunoni AR, Lopes M, Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 2008;11:1169-80.
  • 41. Lang UE, Bajbouj M, Gallinat J, Hellweg R. Brain-derived neurotrophic factor serum concentrations in depressive patients during vagus nerve stimulation and repetitive transcranial magnetic stimulation. Psychopharmacology (Berl) 2006;187:56-9.
  • 42. Bocchio-Chiavetto L, Zanardini R, Bortolomasi M, Abate M, Segala M, Giacopuzzi M, et al. Electroconvulsive Therapy (ECT) increases serum Brain Derived Neurotrophic Factor (BDNF) in drug resistant depressed patients. Eur Neuropsychopharmacol 2006;16:620-4.
  • 43. Ricken R, Adli M, Lange C, Krusche E, Stamm TJ, Gaus S, et al. Brainderived neurotrophic factor serum concentrations in acute depressive patients increase during lithium augmentation of antidepressants. J Clin Psychopharmacol 2013;33:806-9.
  • 44. Choi MJ, Kang RH, Lim SW, Oh KS, Lee MS. Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res 2006;1118:176-82.
  • 45. Harrisberger F, Smieskova R, Schmidt A, Lenz C, Walter A, Wittfeld K, et al. BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev 2015;55:107-18.
  • 46. Smolka MN, Bühler M, Schumann G, Klein S, Hu XZ, Moayer M, et al. Gene-gene effects on central processing of aversive stimuli. Mol Psychiatry 2007;12:307-17.
  • 47. Wang L, Ashley-Koch A, Steffens DC, Krishnan KR, Taylor WD. Impact of BDNF Val66Met and 5-HTTLPR polymorphism variants on neural substrates related to sadness and executive function. Genes Brain Behav 2012;11:352-9.
  • 48. Kendler KS, Kuhn JW, Vittum J, Prescott CA, Riley B. The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replication. Arch Gen Psychiatry 2005;62:529-35.
  • 49. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003;301:386-9.
  • 50. Canli T, Qiu M, Omura K, Congdon E, Haas BW, Amin Z, et al. Neural correlates of epigenesis. Proc Natl Acad Sci U S A 2006;103:16033-8.
  • 51. Vrshek-Schallhorn S, Mineka S, Zinbarg RE, Craske MG, Griffith JW, Sutton J, et al. Refining the Candidate Environment: Interpersonal Stress, the Serotonin Transporter Polymorphism, and Gene-Environment Interactions in Major Depression. Clin Psychol Sci 2014;2:235-48.
  • 52. Segerstrom SC, Miller GE. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry. Psychol Bull 2004;130:601-30.
  • 53. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010;67:446-57.
  • 54. Motivala SJ, Sarfatti A, Olmos L, Irwin MR. Inflammatory markers and sleep disturbance in major depression. Psychosom Med 2005;67:187-94.
  • 55. Bonaccorso S, Marino V, Biondi M, Grimaldi F, Ippoliti F, Maes M. Depression induced by treatment with interferon-alpha in patients affected by hepatitis C virus. J Affect Disord 2002;72:237-41.
  • 56. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 2013;30:297-306.
  • 57. Borsini A, Zunszain PA, Thuret S, Pariante CM. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 2015;38:145-57.
  • 58. Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2016;64:277-84.
  • 59. Wichers MC, Maes M. The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression. J Psychiatry Neurosci 2004;29:11-7.
  • 60. Tsao CW, Lin YS, Chen CC, Bai CH, Wu SR. Cytokines and serotonin transporter in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 2006;30:899-905.
  • 61. Zhang J, Terreni L, De Simoni MG, Dunn AJ. Peripheral interleukin-6 administration increases extracellular concentrations of serotonin and the evoked release of serotonin in the rat striatum. Neurochem Int 2001;38:303- 8.
  • 62. Felger JC, Li L, Marvar PJ, Woolwine BJ, Harrison DG, Raison CL, Miller AH. Tyrosine metabolism during interferon-alpha administration: association with fatigue and CSF dopamine concentrations. Brain Behav Immun 2013;31:153-60.
  • 63. Capuron L, Schroecksnadel S, Féart C, Aubert A, Higueret D, BarbergerGateau P, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry 2011;70:175-82.
  • 64. Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ, et al. Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry 2012;69:1044-53.
  • 65. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 2010;68:748-54.
  • 66. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 2009;66:407-14.
  • 67. Eisenberger NI, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage 2009;47:881-90.
  • 68. Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, et al. Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry 2016;21:1351-7.
  • 69. FelgerJC,LiZ,HaroonE,WoolwineBJ,JungMY,HuX, et al.Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry 2016;21:1358-65.
  • 70. Lotrich FE, Albusaysi S, Ferrell RE. Brain-derived neurotrophic factor serum levels and genotype: association with depression during interferonalpha treatment. Neuropsychopharmacology 2013;38:985-95.
  • 71. Guan Z, Fang J. Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun 2006;20:64-71.
  • 72. Juruena MF. Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy Behav 2014;38:148-59.
  • 73. Silverman MN, Pearce PD, MillerAH.Cytokines and HPAAxisRegulation.
  • 74. Capuron L, Raison CL, Musselman DL, Lawson DH, Nemeroff CB, Miller AH. Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferonalpha therapy. Am J Psychiatry 2003;160:1342-5.
  • 75. Peters AT, Van Meter A, Pruitt PJ, Briceño EM, Ryan KA, Hagan M, et al. Acute cortisol reactivity attenuates engagement of fronto-parietal and striatal regions during emotion processing in negative mood disorders. Psychoneuroendocrinology 2016;73:67-78.
  • 76. Huster RJ, Debener S, Eichele T, Herrmann CS. Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci 2012;32:6053-60.
  • 77. Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, et al. Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci U S A 2005;102:17798-803.
  • 78. Ahmad RF, Malik AS, Kamel N, Reza F, Abdullah JM. Simultaneous EEGfMRI for working memory of the human brain. Australas Phys Eng Sci Med 2016;39:363-78.
  • 79. Nguyen VT, Breakspear M, Cunnington R. Fusing concurrent EEG-fMRI with dynamic causal modeling: application to effective connectivity during face perception. Neuroimage 2014;102:60-70.
  • 80. Sui J, Huster R, Yu Q, Segall JM, Calhoun VD. Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies. Neuroimage 2014;102:11-23.
  • 81. Mulert C, Pogarell O, Hegerl U. Simultaneous EEG-fMRI: perspectives in psychiatry. Clin EEG Neurosci 2008;39:61-4.
  • 82. Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MC. Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 2009;44:1224-38.
  • 83. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, et al. The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A 2009;106:1942-7.
  • 84. Mo J, Liu Y, Huang H, Ding M. Coupling between visual alpha oscillations and default mode activity. Neuroimage 2013;68:112-8.
  • 85. Kandilarova SS, Terziyski KV, Draganova AI, Stoyanov DS, Akabaliev VH, Kostianev SS. Response to pharmacological treatment in major depression predicted by electroencephalographic alpha power - a pilot naturalistic study. Folia Med (Plovdiv) 2017;59:318-25.
  • 86. Liu Y, Huang H, McGinnis-Deweese M, Keil A, Ding M. Neural substrate of the late positive potential in emotional processing. J Neurosci 2012;32:14563-72.
  • 87. Kang D, Liu Y, Miskovic V, Keil A, Ding M. Large-scale functional brain connectivity during emotional engagement as revealed by beta-series correlation analysis. Psychophysiology 2016;53:1627-38.
  • 88. Wacker J, Dillon DG, Pizzagalli DA. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. Neuroimage 2009;46:327-37.
  • 89. Zotev V, Yuan H, Misaki M, Phillips R, Young KD, Feldner MT, et al. Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression. Neuroimage Clin 2016;11:224-38.
  • 90. Allen JJ, Reznik SJ. Frontal EEG Asymmetry as a Promising Marker of Depression Vulnerability: Summary and Methodological Considerations. Curr Opin Psychol 2015;4:93-7.
  • 91. Northoff G, Walter M, Schulte RF, Beck J, Dydak U, et al. GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 2007;10: 1515-7.
  • 92. Falkenberg LE, Westerhausen R, Specht K, Hugdahl K. Resting-state glutamate level in the anterior cingulate predicts blood-oxygen leveldependent response to cognitive control. Proc Natl Acad Sci U S A 2012;109:5069-73.
  • 93. Duncan NW, Enzi B, Wiebking C, Northoff G. Involvement of glutamate in rest-stimulus interaction between perigenual and supragenual anterior cingulate cortex: a combined fMRI-MRS study. Hum Brain Mapp 2011;32:2172-82.
  • 94. Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U, et al. The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 2009;66:478-86.
  • 95. Duncan NW, Hayes DJ, Wiebking C, Tiret B, Pietruska K, Chen DQ, et al. Negative childhood experiences alter a prefrontal-insular-motor cortical network in healthy adults: A preliminary multimodal rsfMRI-fMRI-MRSdMRI study. Hum Brain Mapp 2015;36:4622-37.
  • 96. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 2009;106:1279-84.
  • 97. Goya-Maldonado R, Brodmann K, Keil M, Trost S, Dechent P, Gruber O. Differentiating unipolar and bipolar depression by alterations in large-scale brain networks. Hum Brain Mapp 2016;37: 808-18.
  • 98. Schilbach L, Hoffstaedter F, Müller V, Cieslik EC, Goya-Maldonado R, Trost S, et al. Transdiagnostic commonalities and differences in resting state functional connectivity of the default mode network in schizophrenia and major depression. Neuroimage Clin 2016;10:326-35.
  • 99. Delvecchio G, Fossati P, Boyer P, Brambilla P, Falkai P, Gruber O, et al. Common and distinct neural correlates of emotional processing in Bipolar Disorder and Major Depressive Disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol 2012;22:100-13.
  • 100. Delvecchio G, Sugranyes G, Frangou S. Evidence of diagnostic specificity in the neural correlates of facial affect processing in bipolar disorder and schizophrenia: a meta-analysis of functional imaging studies. Psychol Med 2013;43:553-69.
  • 101. Sprooten E, Rasgon A, Goodman M, Carlin A, Leibu E, Lee WH, et al. Addressing reverse inference in psychiatric neuroimaging: Meta-analyses of task-related brain activation in common mental disorders. Hum Brain Mapp 2017;38:1846-64.
  • 102. McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of Common Neural Circuit Disruptions in Cognitive Control Across Psychiatric Disorders. Am J Psychiatry 2017;174:676-85.
  • 103. Müller VI, Cieslik EC, Serbanescu I, Laird AR, Fox PT, Eickhoff SB. Altered Brain Activity in Unipolar Depression Revisited: Meta-analyses of Neuroimaging Studies. JAMA Psychiatry 2017;74:47-55.
  • 104. Stein DJ, Lund C, Nesse RM. Classification Systems in Psychiatry: Diagnosis and Global Mental Health in. Curr Opin Psychiatry 2013;26:493-7.
  • 105. Stoyanov D, Borgvardt S, Varga S. The problem of translational validity across neuroscience and psychiatry, in Alternative perspectives on psychiatric validation. In: Zachar P, editor. Oxford University Press: Oxford; 2014:128.
  • 106. Stoyanov D. A linkage of mind and brain: towards translational validity between neurobiology and psychiatry. Biomedical Reviews 2011;22:65- 76.
  • 107. Stoyanov D, Kandilarova S, Sirakov S, Stoeva M, Velkova KG, Kostianev SS. Towards translational cross-validation of clinical psychological tests and fMRI: experimental implementation. Comptes rendus de L'Academie bulgare des Sciences 2017;70:879-85.
Balkan Medical Journal-Cover
  • ISSN: 2146-3123
  • Başlangıç: 2015
  • Yayıncı: Erkan Mor
Sayıdaki Diğer Makaleler

A Report of Brugada Syndrome Presenting with Cardiac Arrest Triggered by Verapamil Intoxication

İlkay ERDOĞAN, Kahraman YAKUT, Birgül VARAN, İlyas ATAR

Prevalence of Epidermal Growth Factor Receptor Mutations in Patients with Non-Small Cell Lung Cancer in Turkish Population

Sevgen ÖNDER, Ebru ŞENER, Gaye Güler TEZEL, Çisel AYDIN

Translational Functional Neuroimaging in the Explanation of Depression

Stefan BORGWARDT, Sevdalina KANDİLAROVA, Drozdstoy STOYANOV

Role of Chronobiology as a Transdisciplinary Field of Research: Its Applications in Treating Mood Disorders

Okan ÇALIYURT

A Rare Complication of Phenytoin Infusion in Newborn: Purple Glove Syndrome

Ahmet Yağmur BAŞ, Nihal DEMİREL, Sara EROL, Sezin ÜNAL, Dilek Ulubaş IŞIK

A Different SLC2A1 Gene Mutation in Glut 1 Deficiency Syndrome: c.734A>C

Mehtap KAĞNICI, Rüya ÇOLAK, Senem Alkan ÖZDEMİR, Ezgi Yangın ERGON, Şebnem ÇALKAVUR

Endocrinological Evaluations of a Neurofibromatosis Type 1 Cohort: Is it Necessary to Evaluate Autoimmune Thyroiditis in Neurofibromatosis Type 1?

Hasan ÖNAL, Gözde YEŞİL, Serhat GÜLER

Not All Brugada Electrocardiogram Patterns are Brugada Syndrome or Brugada Phenocopy

Umut KOCABAŞ, Byron H GOTTSCHALK, Adrian BARANCHUK, Grace XU

Caffeine Increases Apolipoprotein A-1 and Paraoxonase-1 but not Paraoxonase-3 Protein Levels in Human-Derived Liver (HepG2) Cells

Kıymet TABAKÇIOĞLU, Eray ÖZGÜN, Sevgi ESKİOCAK, Gülben Sayılan ÖZGÜN, Selma Süer GÖKMEN, Erol ÇAKIR

Key Developments in Translational Neuroscience: an Update

Drozdstoy St STOYANOV