Tire-Road Friction Coefficient Estimation and Experimental Setup Design of Electric Vehicle

Tire-Road Friction Coefficient Estimation and Experimental Setup Design of Electric Vehicle

Nowadays, electric vehicles have become an important area because of air pollution, increasing use of renewable energy sources and being exhausted of oil fuels. In our country even the usage of electrical vehicles is not widespread nowadays, but also very popular and it is thought that it will increase. In this area, new studies and projects appear continuously Real systems are moving systems and it is difficult and expensive to evaluate by electrical vehicles; therefore an experiment mechanism has been created. In this study two fixed magnet synchronous hub motors have been used as wheels and the other one as load. In order to find the speed of the wheel, load value and coefficient of friction related to sliding, Burckhardt model has been used and the results obtained with different speed and road conditions have been presented here.

___

  • [1] Emadi, M. Ehsani, and J. M. Miller, Vehicular Electric Power Systems: Land, Sea, Air, and Space Vehicles, New York: Marcel Dekker, December, 2000. [2] A. Emadi, S.S. Williamson, A. Khaligh, “Power electronics intensive solutions for advanced electric, hybrid electric, and fuelcell vehicular power systems”, IEEE Transaction on PowerElectronics ,Vol. 21, Issue 3, May Page(s):567- 577 2006. [3] Koca, Özmen, G., and Akpolat. Z. H., "Bulanık Mantık ve Erişim Kuralı Yaklaşımını Kullanarak Bir Elektrikli Aracın Dayanıklı Hız Denetimi." Gazi Üniversitesi Politeknik Dergisi, 9(2): 93-103, 2006. [4] Kerem, A., "Elektrikli Araç Teknolojisinin Gelişimi ve Gelecek Beklentileri." Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi ,5 (1): 1-13, 2014. [5] Burckhardt, M., Fahrwerktechnik: Radschlupf - Regelsystmeme Würzburg: Vegel Verlog, 1993. [6] Bulgu A.E., “ Tekerlek motorlu seri hibrit elektrikli araçlar için kontrol algoritmalarının geliştirilmesi” Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, Türkiye, 2010. [7] D.Azmi.,“Elektrikli Otomobiller ve Patinaj Engellenmiş bir doğrudan sürüşlü elektrikli otomobil tahrik sistemi.” İstanbul Üniversitesi Mühendislik Fakültesi Journal of Elektrical & Electronics, Volume 2, Number 1-383-393, 2002. [8] M. Yoshımura, H.Fujımoto, “Driving Torque Control Method for Electric Vehicle with In-Wheel Motors”, Electrical Engineering in Japan, Vol. 181, No. 3, 2012. [9] D.O.S.Yin, Y.Hori “A novel traction control for EV based on maximum transmissible torque estimation”, IEEE Trans Industrial Electronics n;56(6), 2009. [10] Z. Rahman., K.L.Butler, M.Ehsani “Effect of Extended-Speed, Constant- Power Operation of Electric Drives on the Design and Performance of EV-HEV Propulsion System”, SAE,2000-01-1557, (2000). [11] Rahman Z., Ehsani M., Butler K.L., (2000) “An Investigation of Electric Motor Drive Characteristics for EV and HEV Propulsion Systems” SAE 2000-01-3062. [12] Husaın I., Islam M.S., (1999) “Design, Modeling and Simulation of an Electric Vehicle System”, SAE 1999-01-1149. [13] Çınar M.A., Gündoğan Ç., Erfan Kuyumcu F., “Elektrik Tahrikli Taşıtlar için Çekiş Kontrol Sistemi Simülasyonu”, ELECO’2004 Elektrik-Elektronik-Bilgisayar Mühendisliği Kongresi, 296-300,2004. [14] T. Gillespie, Fundamentals of Vehicle Dynamics. SAE – Society of Automotive Engineers, 1992. [15] Sakai, S.; Sado, H.; Hori, Y. Anti-skid control with motor in electric vehicle. In Proceedings of the 6th International Workshop on Advanced Motion Control, Nagoya, Japan, 30 March–1 April pp. 317–322,2000. [16] G. A. Magallan, C. H. De Angelo, and G. O. Garcia, “Maximization of the traction forces in a 2WD electric vehicle,” IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 369–380, 2011. [17] C. Canudas-de Wit, P. Tsiotras, E. Velenis, M. Basset, and G. Gissinger, “Dynamic friction models for road/tire longitudinal interaction,”Veh. Syst. Dyn., vol. 39, no. 3, pp. 189–226, Mar. 2003. [18] Pacejka, H.B.; Bakker, E. The magic formula tyre model. Vehicle. Syst. Dyn. Int. J. Veh. Mech. Mobil. 1993, 21, 1–18. [19] Oudghiri, M.; Chadli, M.; Hajjaji, A.E. Robust fuzzy sliding mode control for antilock braking system. Int. J. Sci. Tech. Autm. Control, 1, 13–28,2007.