Quaternion-Based Robust Satellite Attitude Tracking Control

Quaternion-Based Robust Satellite Attitude Tracking Control

In this paper, a nonlinear robust quaternion-based controller is developed to address the three-axis attitude tracking control problem of rigid spacecraft in presence of parametric uncertainties, unknown external disturbances and sensor noise. As a first step, a robust controller is designed that compensates parametric uncertainty and disturbance effects. The robust controller then reformulated to deal also with sensor noise. Singularity free unit quaternions are used to represent the attitude of the satellite in three-dimensional space. The Lyapunov-based stability analysis is applied to prove that a uniformly ultimately bounded tracking result is achieved. Simulation results are presented to illustrate the feasibility of the proposed control strategy. 

___

  • G. Meyer, Design and Global Analysis of Spacecraft Attitude Control Systems, NASA TR R-361, March 1971.
  • J. Y. Wen, K. Kreutz-Delgado, The Attitude Control Problem, IEEE Transactions on Automatic Control, vol. 36, no. 10, pp. 1148-1162, 1991.
  • N. A. Chaturverdi, A. K. Sanyal, N. H. McClamroch, Rigid-body Attitude Control, IEEE Control Systems Magazine, vol. 31, no. 3, pp 30-51, 2011.
  • M. D. Shuster, A Survey of Attitude Representations, Journal of Astronautical Sciences, vol. 41, no.4, pp.439-517, 1993.
  • Y. Bai, J. D. Biggs, F. B. Zazzera, N. Cui, Adaptive Attitude Tracking with Active Uncertainty Rejection, Journal of Guidance, Control, and Dynamics, vol. 41, no. 2, pp. 550-558, 2018.
  • D. Thakur, S. Srikant, M. R. Akella, Adaptive attitude-Tracking Control of Spacecraft with Uncertain Time-Varying Inertia Parameters, Journal of Guidance, Control, and Dynamics, vol. 38, no. 1, pp. 41-52, 2015.
  • L. Cao, X. L. Chen, Y. Zhao, Minimum Sliding Mode Error Feedback Control for Fault Tolerant Small Satellite Attitude Control, Advances in Space Research, vol. 53, no.2, pp. 309-324, 2014.
  • A. Sofyali, E. M. Jafarov, Integral Sliding Mode Control of Small Sattelite Attitude Motion by Purely Magnetic Actuation, IFAC Proc. Volumes, vol. 47, no.3, pp. 7947-7953, 2014.
  • Z-G. Zhou, Y-A. Zhang, X-N. Shi, D. Zhou, Robust attitude tracking for Rigid Spacecraft with Prescribed Transient Performance, Int. Journal of Control, vol. 90, Iss. 11, 2017.
  • A. Safa, M. Baradarannia, H. Kharrati, S. Khanmohammadi, Robust Attitude Tracking Control for a Rigid Spacecraft Under Input Delays and Actuator Errors, Int. Journal of Control, vol. 0, Iss. 0, 2017.
  • V. Utkin, J. Guldner, J. Shi, Sliding Mode Control in Electromechanical Systems, PA, Philadelphia, 1999.
  • J. P. Hespanha, D. Liberzon, A. S. Morse, Overcoming The Limitations of Adaptive Control by means of Logic-based Switching, Syst. Contr. Lett., vol. 49, no. 1, pp. 49-65, 2003
  • P. A. Ioannou, J. Sun, Robust Adaptive Control, NJ, Upper Saddle River: Prentice-Hall, 1996.
  • H. Gui, G. Vukovich, Global Finite-time Attitude Tracking via Quaternion Feedback, Syst, Contr. Lett., vol. 97, pp. 176-183, 2016.
  • S. Wu, G. Radice, Y. Gao, Z. Sun, Quaternion-based Finite-time Control for Spacecraft Attitude Tracking, Acta Astronica, vol. 69, n0. 1, pp. 48-58, 2011.
  • K. Lu, Y. Xia, Finit-time Fault-Tolerant Control for Rigid Spacecraft with Actuator Saturations, IET Control Theory & Appl., vol. 7, n0. 11, pp. 1529-1539, 2013.
  • A. Behal, W. Dixon, D. M. Dawson, B. Xian, Lyapunov-Based Control of Robotic Systems, CRC Press, 2010.
  • M. Wood, W. H. Chen, Attitude Control of Magnetically Actuated Satellites with an uneven Inertia Distribution, Aerospace Science and Technology, vol. 25, pp. 29-39, 2013
  • B. T. Costic, D. M. Dawson, M. S. d. Queiroz, V. Kapila, Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements, Journal of Guidance, Control and Dynamics, vol. 24, no. 6, pp. 1214-1222, 2001.
  • B. Wie, Spacecraft Vehicle Dynamics and Control, AIAA, 1998.
  • P. C. Hughes, Spacecraft Attitude Dynamics, Wiley, 1986.
  • W. E. Dixon, A. Behal, D. M. Dawson, S. Nagarkatti, Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach, MA, Boston: Birkhuser, 2003