Negative Capacitance Phenomenon in GaAs-Based MIS Devices Under Ionizing Radiation

Negative Capacitance Phenomenon in GaAs-Based MIS Devices Under Ionizing Radiation

This study focuses on the abnormal peaks observed in voltage-dependent capacitance graphs and negative capacitance behaviors of the GaAs-based MOS devices for the unirradiated sample and after exposing the device to 5 and 10 kGy ionizing (gamma) radiation doses. Experimental results showed that the amplitude of the abnormal peaks, observed at about 1.75 V, increases with the irradiation dose. The peak point was also shifted toward the positive biases after irradiation. Furthermore, the conductance values increased rapidly and reached their maximum level, while the capacitance values reached their minimum level in the high voltage biases. This situation is directly related to the inductive behavior of the MOS devices. However, it has been determined that the MOS device's inductive behavior is more effective after irradiation. These behaviors can be observed because of the ionization process, the MOS device's series resistance, surface states, and due to some displacement damages caused by ionizing radiation. Therefore, the series resistance and the radiation-induced surface states were obtained to clarify the impact of radiation on the device. It was seen that the radiation-induced surface states changed around 3x1012 for the maximum cumulative dose (10 kGy), and the series resistance values changed less than 2 Ω (it was obtained 8.74 Ω for 0 kGy and 6.82 Ω for 10 kGy). As a result, the degradation in the GaAs-based MOS device was determined to be insignificant for 10 kGy doses. Therefore, this MOS device can be safely used as an electronic component in radiation environments such as nuclear plants and satellite systems.

___

  • [1] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. doi: 10.1002/0470068329.
  • [2] R. L. Boylestad and L. Nashelsky, Electronic Devices and Circuit Theory, Eleventh Edition. Harlow: Pearson Education Limited, 2014.
  • [3] H. Durmuş, A. Tataroğlu, Ş. Altındal, and M. Yıldırım, “The effect of temperature on the electrical characteristics of Ti/n-GaAs Schottky diodes,” Current Applied Physics, vol. 44, pp. 85–89, Dec. 2022, doi: 10.1016/j.cap.2022.09.015.
  • [4] S. Demirezen, Ş. Altındal, Y. Azizian-Kalandaragh, and A. M. Akbaş, “A comparison of Au/n-Si Schottky diodes (SDs) with/without a nanographite (NG) interfacial layer by considering interlayer, surface states (N ss ) and series resistance (R s ) effects,” Phys Scr, vol. 97, no. 5, p. 055811, May 2022, doi: 10.1088/1402-4896/ac645f.
  • [5] A. Kaya, Ş. Altındal, Y. Ş. Asar, and Z. Sönmez, “On the Voltage and Frequency Distribution of Dielectric Properties and ac Electrical Conductivity in Al/SiO 2 /p-Si (MOS) Capacitors,” Chinese Physics Letters, vol. 30, no. 1, p. 017301, Jan. 2013, doi: 10.1088/0256-307X/30/1/017301.
  • [6] A. Amiri, “Solid-phase microextraction-based sol–gel technique,” TrAC Trends in Analytical Chemistry, vol. 75, pp. 57–74, Jan. 2016, doi: 10.1016/j.trac.2015.10.003.
  • [7] B. Akin, J. Farazin, Ş. Altındal, and Y. Azizian-Kalandaragh, “A comparison electric-dielectric features of Al/p-Si (MS) and Al/ (Al2O3:PVP)/p-Si (MPS) structures using voltage–current (V–I) and frequency–impedance (f–Z) measurements,” Journal of Materials Science: Materials in Electronics, vol. 33, no. 27, pp. 21963–21975, Sep. 2022, doi: 10.1007/s10854-022-08984-2.
  • [8] K. Choy, “Chemical vapour deposition of coatings,” Prog Mater Sci, vol. 48, no. 2, pp. 57–170, 2003, doi: 10.1016/S0079-6425(01)00009-3.
  • [9] R. Asmatulu, “Highly Hydrophilic Electrospun Polyacrylonitrile/ Polyvinypyrrolidone Nanofibers Incorporated with Gentamicin as Filter Medium for Dam Water and Wastewater Treatment,” Journal of Membrane and Separation Technology, vol. 5, no. 2, pp. 38–56, Jul. 2016, doi: 10.6000/1929-6037.2016.05.02.1.
  • [10] H. E. Lapa, A. Kökce, A. F. Özdemir, and Ş. Altındal, “Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/ n -4H-SiC (MPS) Structure Using Impedance Spectroscopy Method,” Zeitschrift für Physikalische Chemie, vol. 234, no. 3, pp. 505–516, Mar. 2020, doi: 10.1515/zpch-2017-1091.
  • [11] H. Zhou and S. F. Bent, “Fabrication of organic interfacial layers by molecular layer deposition: Present status and future opportunities,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 31, no. 4, p. 040801, Jul. 2013, doi: 10.1116/1.4804609.
  • [12] A. Mishra, N. Bhatt, and A. K. Bajpai, “Nanostructured superhydrophobic coatings for solar panel applications,” in Nanomaterials-Based Coatings, Elsevier, 2019, pp. 397–424. doi: 10.1016/B978-0-12-815884-5.00012-0.
  • [13] H. Sawatari and O. Oda, “Schottky diodes on n‐type InP with CdOx interfacial layers grown by the adsorption and oxidation method,” J Appl Phys, vol. 72, no. 10, pp. 5004–5006, Nov. 1992, doi: 10.1063/1.352027.
  • [14] A. Kaymaz, “Ionizing radiation response of bismuth titanate-based metal-ferroelectric-semiconductor (MFS) type capacitor,” Microelectronics Reliability, vol. 133, p. 114546, Jun. 2022, doi: 10.1016/j.microrel.2022.114546.
  • [15] S. Demirezen, A. Kaya, Ş. Altındal, and İ. Uslu, “The energy density distribution profile of interface traps and their relaxation times and capture cross sections of Au/GO-doped PrBaCoO nanoceramic/n-Si capacitors at room temperature,” Polymer Bulletin, vol. 74, no. 9, pp. 3765–3781, Sep. 2017, doi: 10.1007/s00289-017-1925-2.
  • [16] A. Kaymaz, H. Uslu Tecimer, E. Evcin Baydilli, and Ş. Altındal, “Investigation of gamma-irradiation effects on electrical characteristics of Al/(ZnO–PVA)/p-Si Schottky diodes using capacitance and conductance measurements,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 11, pp. 8349–8358, Jun. 2020, doi: 10.1007/s10854-020-03370-2.
  • [17] I. Orak, A. Kocyigit, and Ş. Alindal, “Electrical and dielectric characterization of Au/ZnO/n–Si device depending frequency and voltage,” Chinese Physics B, vol. 26, no. 2, p. 028102, Feb. 2017, doi: 10.1088/1674-1056/26/2/028102.
  • [18] M. Ambrico et al., “A study of remote plasma nitrided nGaAs/Au Schottky barrier,” Solid State Electron, vol. 49, no. 3, pp. 413–419, Mar. 2005, doi: 10.1016/j.sse.2004.11.007.
  • [19] H. Durmuş, M. Yıldırım, and Ş. Altındal, “On the possible conduction mechanisms in Rhenium/n-GaAs Schottky barrier diodes fabricated by pulsed laser deposition in temperature range of 60–400 K,” Journal of Materials Science: Materials in Electronics, vol. 30, no. 9, pp. 9029–9037, May 2019, doi: 10.1007/s10854-019-01233-z.
  • [20] M. K. Hudait, P. Venkateswarlu, and S. B. Krupanidhi, “Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures,” Solid State Electron, vol. 45, no. 1, pp. 133–141, Jan. 2001, doi: 10.1016/S0038-1101(00)00230-6.
  • [21] D. Ahmad Fauzi, N. K. Alang Md Rashid, M. R. Mohamed Zin, and N. F. Hasbullah, “Radiation Performance of GaN and InAs/GaAs Quantum Dot Based Devices Subjected to Neutron Radiation,” IIUM Engineering Journal, vol. 18, no. 1, pp. 101–109, May 2017, doi: 10.31436/iiumej.v18i1.653.
  • [22] V. Balasubramani, P. v. Pham, A. Ibrahim, J. Hakami, M. Z. Ansari, and T. K. Le, “Enhanced photosensitive of Schottky diodes using SrO interfaced layer in MIS structure for optoelectronic applications,” Opt Mater (Amst), vol. 129, p. 112449, Jul. 2022, doi: 10.1016/j.optmat.2022.112449.
  • [23] Ş. Karataş, Ş. Altındal, M. Ulusoy, Y. Azizian-Kalandaragh, and S. Özçelik, “Temperature dependence of electrical characteristics and interface state densities of Au/n-type Si structures with SnS doped PVC interface,” Phys Scr, vol. 97, no. 9, p. 095816, Sep. 2022, doi: 10.1088/1402-4896/ac89bb.
  • [24] A. B. Ulusan, A. Tataroglu, Ş. Altındal, and Y. Azizian-Kalandaragh, “Photoresponse characteristics of Au/(CoFe2O4-PVP)/n-Si/Au (MPS) diode,” Journal of Materials Science: Materials in Electronics, vol. 32, no. 12, pp. 15732–15739, Jun. 2021, doi: 10.1007/s10854-021-06124-w.
  • [25] J. R. Nicholls, “Electron trapping effects in SiC Schottky diodes: Review and comment,” Microelectronics Reliability, vol. 127, p. 114386, Dec. 2021, doi: 10.1016/j.microrel.2021.114386.
  • [26] R. M. Sahani and A. Dixit, “A comprehensive review on zinc oxide bulk and nano-structured materials for ionizing radiation detection and measurement applications,” Mater Sci Semicond Process, vol. 151, p. 107040, Nov. 2022, doi: 10.1016/j.mssp.2022.107040.
  • [27] S. Demirezen et al., “Electrical characteristics and photosensing properties of Al/symmetrical CuPc/p-Si photodiodes,” Journal of Materials Science: Materials in Electronics, Aug. 2022, doi: 10.1007/s10854-022-08906-2.
  • [28] A. Tataroğlu, Ş. Altındal, M. H. Bölükdemir, and G. Tanır, “Irradiation effect on dielectric properties and electrical conductivity of Au/SiO2/n-Si (MOS) structures,” Nucl Instrum Methods Phys Res B, vol. 264, no. 1, pp. 73–78, Nov. 2007, doi: 10.1016/j.nimb.2007.07.026.
  • [29] Ç. Ş. Güçlü, A. F. Özdemir, A. Karabulut, A. Kökce, and Ş. Altındal, “Investigation of temperature dependent negative capacitance in the forward bias C-V characteristics of (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs),” Mater Sci Semicond Process, vol. 89, pp. 26–31, Jan. 2019, doi: 10.1016/j.mssp.2018.08.019.
  • [30] E. Arslan, Y. Şafak, Ş. Altındal, Ö. Kelekçi, and E. Özbay, ‘Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AlN/GaN heterostructures’, J Non Cryst Solids, vol. 356, no. 20–22, pp. 1006–1011, May 2010, doi: 10.1016/j.jnoncrysol.2010.01.024.
  • [31] E. E. Tanrıkulu, S. Demirezen, Ş. Altındal, and İ. Uslu, “On the anomalous peak and negative capacitance in the capacitance–voltage (C–V) plots of Al/(%7 Zn-PVA)/p-Si (MPS) structure,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 4, pp. 2890–2898, Feb. 2018, doi: 10.1007/s10854-017-8219-1.
  • [32] J. A. M. ALSMAEL, N. URGUN, S. O. TAN, and H. TECİMER, ‘Effectuality of the Frequency Levels on the C&G/ω–V Data of the Polymer Interlayered Metal-Semiconductor Structure’, Gazi University Journal of Science Part A: Engineering and Innovation, vol. 9, no. 4, pp. 554–561, Dec. 2022, doi: 10.54287/gujsa.1206332.S. Demirezen, E. E. Tanrıkulu, and Ş. Altındal, “The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors,” Indian Journal of Physics, vol. 93, no. 6, pp. 739–747, Jun. 2019, doi: 10.1007/s12648-018-1355-5.
  • [33] J. C. Wong and S. Salahuddin, ‘Negative Capacitance Transistors’, Proceedings of the IEEE, vol. 107, no. 1, pp. 49–62, Jan. 2019, doi: 10.1109/JPROC.2018.2884518.
  • [34] S. Demirezen, E. E. Tanrıkulu, and Ş. Altındal, ‘The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors’, Indian Journal of Physics, vol. 93, no. 6, pp. 739–747, Jun. 2019, doi: 10.1007/s12648-018-1355-5.
  • [35] J. R. Srour and J. W. Palko, “Displacement damage effects in irradiated semiconductor devices,” IEEE Trans Nucl Sci, vol. 60, no. 3, pp. 1740–1766, 2013, doi: 10.1109/TNS.2013.2261316.
  • [36] A. F. Özdemir et al., “The analysis of hydrostatic pressure dependence of the Au/native oxide layer/n-GaAs/Au-Ge Schottky diode parameters,” The European Physical Journal Applied Physics, vol. 60, no. 1, p. 10101, Oct. 2012, doi: 10.1051/epjap/2012110483.
  • [37] A. Kaymaz, E. Evcin Baydilli, H. Uslu Tecimer, Ş. Altındal, and Y. Azizian-Kalandaragh, “Evaluation of gamma-irradiation effects on the electrical properties of Al/(ZnO-PVA)/p-Si type Schottky diodes using current-voltage measurements,” Radiation Physics and Chemistry, vol. 183, p. 109430, Jun. 2021, doi: 10.1016/j.radphyschem.2021.109430.
  • [38] H. G. Çetinkaya, M. Yıldırım, P. Durmuş, and Ş. Altındal, “Diode-to-diode variation in dielectric parameters of identically prepared metal-ferroelectric-semiconductor structures,” J Alloys Compd, vol. 728, pp. 896–901, Dec. 2017, doi: 10.1016/j.jallcom.2017.09.030.
  • [39] S. Demirezen, H. G. Çetinkaya, and Ş. Altındal, “Doping rate, Interface states and Polarization Effects on Dielectric Properties, Electric Modulus, and AC Conductivity in PCBM/NiO:ZnO/p-Si Structures in Wide Frequency Range,” Silicon, Jan. 2022, doi: 10.1007/s12633-021-01640-0.
  • [40] B. Rong, L. K. Nanver, J. N. Burghartz, A. B. M. Jansman, A. G. R. Evans, and B. S. Rejaei, “C-V characterization of MOS capacitors on high resistivity silicon substrate,” in Electrical Performance of Electrical Packaging (IEEE Cat. No. 03TH8710), pp. 489–492. doi: 10.1109/ESSDERC.2003.1256920.
  • [41] M. Ulusoy, Ş. Altındal, Y. Azizian-Kalandaragh, S. Özçelik, and Z. Mirzaei-Kalar, “The electrical characteristic of an MIS structure with biocompatible minerals doped (Brushite+Monetite: PVC) interface layer,” Microelectron Eng, vol. 258, p. 111768, Apr. 2022, doi: 10.1016/j.mee.2022.111768.
  • [42] Ş. Altındal and H. Uslu, “The origin of anomalous peak and negative capacitance in the forward bias capacitance-voltage characteristics of Au/PVA/n-Si structures,” J Appl Phys, vol. 109, no. 7, p. 074503, Apr. 2011, doi: 10.1063/1.3554479.
  • [43] Ç. Bilkan and Ş. Altındal, “Investigation of the C-V characteristics that provides linearity in a large reverse bias region and the effects of series resistance, surface states and interlayer in Au/n-Si/Ag diodes,” J Alloys Compd, vol. 708, pp. 464–469, Jun. 2017, doi: 10.1016/j.jallcom.2017.03.013.
  • [44] J. R. Srour, C. J. Marshall, and P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans Nucl Sci, vol. 50, no. 3, pp. 653–670, Jun. 2003, doi: 10.1109/TNS.2003.813197.
  • [45] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. Hoboken, NJ: Wiley, 2003.
  • [46] A. Teffahi et al., “Effect of 60Co γ-ray irradiation on electrical properties of Ti/Au/GaAs1−xNx Schottky diodes,” Current Applied Physics, vol. 16, no. 8, pp. 850–858, Aug. 2016, doi: 10.1016/j.cap.2016.05.003.
  • [47] S. Kaya, A. Aktag, and E. Yilmaz, “Effects of gamma-ray irradiation on interface states and series-resistance characteristics of BiFeO3 MOS capacitors,” Nucl Instrum Methods Phys Res B, vol. 319, pp. 44–47, Jan. 2014, doi: 10.1016/j.nimb.2013.11.006.
  • [48] Ş. Karataş, A. Türüt, and Ş. Altındal, “Irradiation effects on the C–V and G/ω–V characteristics of Sn/p-Si (MS) structures,” Radiation Physics and Chemistry, vol. 78, no. 2, pp. 130–134, Feb. 2009, doi: 10.1016/j.radphyschem.2008.09.006.
  • [49] R. Castagné and A. Vapaille, ‘Description of the SiO2-Si interface properties by means of very low frequency MOS capacitance measurements’, Surf Sci, vol. 28, no. 1, pp. 157–193, Nov. 1971, doi: 10.1016/0039-6028(71)90092-6.
  • [50] S. Maurya and S. Awasthi, “Effect of zero bias, 2.7 MeV proton irradiation on HfO2,” J Radioanal Nucl Chem, vol. 318, no. 2, pp. 947–953, Nov. 2018, doi: 10.1007/s10967-018-6229-y.