Consistency and Comparison of Monomodal Multi-Temporal Medical Image Registration-Segmentation and Mathematical Model for Glioblastoma Volume Progression

Consistency and Comparison of Monomodal Multi-Temporal Medical Image Registration-Segmentation and Mathematical Model for Glioblastoma Volume Progression

Tumor volume progression analysis and tumor volume measurement are very common tasks in cancer research and image processing fields. Tumor volume measurement can be carried out in two ways. The first way is to use different mathematical formulas and the second way is to use image registration method. In this paper, using 3D medical image registration-segmentation algorithm, multiple scans of MR images of a patient who has brain tumor are registered with different MR images of the same patient acquired at a different time so that growth of the tumor inside the patient's brain can be investigated. Tumor volume progression analysis and tumor volume measurement are performed using image registration technique and the results are compared with the results of tumor volume measurement by mathematical formulas. For the first patient, grown brain tumor volume is found to be 10345 mm³, diminished brain tumor volume is found to be 15278 mm³ and unchanged brain tumor volume is found to be 20876 mm³. Numerical results obtained by image registration model proves that medical image - registration method is not only between the true ranges but also is very close to the best mathematical formula. Medical image registration-segmentation are implemented to 19 patients and satisfactory results are obtained The results are compared with the results obtained from mathematical methods. An advantageous point of medical image registration-segmentation method over mathematical models for brain tumor investigation is that grown, diminished, and unchanged brain tumor parts of the patients are investigated and computed on an individual basis in a three - dimensional (3D) manner within the time.

___

  • [1] L.M. DeAngelis, “Brain tumors”, Med. Prog. N Engl J Med., 114(1), 2001, 114–123.
  • [2] B. A. Kohler et al., “Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system”, J. Natl. Cancer Inst. 103(9), 2011, 714-736.
  • [3] G. Mazzara, R. Velthuizen, J. Pearlman, H. Greenberg, H. Wagner, “Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation”, Int J Radiat Oncol Biol Phys. 59(1), 2004, 300–312.
  • [4] F.K. Landeghem et al., “Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles”, Biomaterials. 30(1), 52–57.
  • [5] D. Krex et al., “Long-term survival with glioblastoma multiforme” Brain, 130(10), 2007, 2596–2606.
  • [6] R.B. Seither, B. Jose, K.J. Paris, R.D. Lindberg, W.J. Spanos, “Results of irradiation in patients with high-grade gliomas evaluated by magnetic resonance imaging”, Am. J. Clin. Oncol., 18(4), 1995, 297–299.
  • [7] J.M. Caudrelier et al., “MRI definition of target volumes using fuzzy logic method for three-dimensional conformal radiation therapy”, Int. J. Radiat. Oncol. Biol. Phys. 55(1), 2003, 225–233.
  • [8] R.K. T. Haken et al., “A quantitative assessment of the addition of MRI to CT-based, 3-D treatment planning of brain tumors”, Radiother. Oncol. 25(2), 1992, 121–133.
  • [9] E.C. Halperin, G. Bentel, E.R. Heinz, P.C. Burger, “Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based on post mortem topographic anatomy with CT correlations”, Int. J. Radiat. Oncol. Biol. Phys., 17(6), 1989, 1347–1350.
  • [10] K. Kaplan, Y. Kaya, M. Kuncan, H. M. Ertunc, “Brain tumor classification using modified local binary patterns (LBP) feature extraction methods”, Medical Hypotheses, 139 (2020), 109696.
  • [11] V.S. Khoo, E.J. Adams, F. Saran, J.L. Bedford, J.R. Perks, A.P. Warrington, M. Brada, “A comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas”, Int. J. Radiat. Oncol. Biol. Phys., 46(5), 2000, 1309–1317.
  • [12] P. Sminia, R. Mayer, “External beam radiotherapy of recurrent glioma: radiation tolerance of the human brain”, Cancers (Basel). 4(2), 2012, 379– 399.
  • [13] R.K. Ten Haken, B.A. Fraass, A.S. Lichter, L.H. Marsh, E.H. Radany, H.M. Sandler, “A brain tumor dose escalation protocol based on effective dose equivalence to prior experience”, Int. J. Radiat. Oncol. Biol. Phys. 42(1), 1998, 137–141.
  • [14] D.H. Char, S. Kroll, T.L. Phillips, “Uveal melanoma: growth rate and prognosis”, Arch. Ophthalmol. 115(8), 1997, 1014–1018.
  • [15] J.M. Romero, P.T. Finger, R.B. Rosen, R. Iezzi, “Three-dimensional ultrasound for the measurement of choroidal melanomas”, Arch. Ophthalmol. 119(9), 2001, 1275–1282.
  • [16] T. Grasbon, S. Schriever, J.P. Hoops, A.J. Mueller, “3D-Ultraschall Erste Erfahrungen bei verschiedenen Augenerkrankungen”, Der Ophthalmol. 98(8), 2001, 88–93.
  • [17] W. Li, E.S. Gragoudas, K.M. Egan, “Tumor basal area and metastatic death after proton beam irradiation for choroidal melanoma”, Arch. Ophthalmol. 121(1), 2003, 68–72.
  • [18] E. Richtig, G. Langmann, K. Müllner, G. Richtig, J. Smolle, “Calculated tumour volume as a prognostic parameter for survival in choroidal melanomas”, Eye (Lond). 18(6), 2004, 619–623.
  • [19] Y. Liu, S.M. Sadowski, A.B. Weisbrod, E. Kebebew, R.M. Summers, J. Yao, “Patient specific tumor growth prediction using multimodal images”, Med. Image Anal. 18(3), 2014, 555–566.
  • [20] R. Rask, P.K. Jensen, “Precision of ultrasonic estimates of choroidal melanoma regression” 233(1995), 1995, 777–782.
  • [21] H. Rubin, P. Arnstein, B.M. Chu, “Tumor progression in nude mice and its representation in cell culture”, J. Natl. Cancer Inst. 77(5), 1986, 1125– 1135.
  • [22] H. Rubin, B.M. Chu, P. Arnstein, “Selection and adaptation for rapid growth in culture of cells from delayed sarcomas in nude mice”, Cancer Res. 47(2), 1987, 486–492.
  • [23] S. Karpagam, S. Gowri, “Brain tumor growth and volume detection by ellipsoid-diameter technique using MRI data”, Int. J. Comput. Sci. 9(2012), 2012, 121–126.
  • [24] M.F. Dempsey, B.R. Condon, D.M. Hadley, Measurement of tumor “size” in recurrent malignant glioma: 1D, 2D, or 3D?, AJNR Am. J. Neuroradiol. 26 (2005) 770–776.
  • [25] A. Talkington, R. Durrett, Estimating tumor growth rates in vivo, V (2014) 1–27.
  • [26] T. Pala, A.Y. Camurcu, "Design of decision support system in the setastatic colorectal cancer data set and its application", Balkan Journal of Electrical and Computer Engineering 4(1), 2016, 12-16.
  • [27] H.S. Nogay, T.H. Akinci, "A convolutional neural network application for predicting the locating of squamous cell carcinoma in the lung", Balkan Journal of Electrical and Computer Engineering 6(3), 2018, 207-210.
  • [28] F. Ozyurt, E. Sert, E. Avci and E. Dogantekin, Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy, Measurement, 147, 106830.
  • [29] S.E.A. Muenzing, B. Ginneken, K. Murphy, J.P.W. Pluim, “Supervised quality assessment of medical image registration: Application to intra-patient CT lung registration”, Med. Image Anal. 16(8), 2012, 1521–1531.
  • [30] K.K. Brock, L.A. Dawson, M.B. Sharpe, D.J. Moseley, D.A. Jaffray, “Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue”, Int. J. Radiat. Oncol. Biol. Phys. 64(4), 2006, 1245–1254.
  • [31] M.R. Kaus, S.K. Warfield, A. Nabavi, P.M. Black, F.A. Jolesz, R. Kikinis, “Automated segmentation of MR images of brain tumors”, Radiology, 218(2), 2001, 586–591.
  • [32] J.P. Thirion, “Image matching as a diffusion process: an analogy with Maxwell’s demons”, Med. Image Anal. 2(3), 1998, 243–260.
  • [33] I. Bloch, O. Colliot, O. Camara, T. Géraud, “Fusion of spatial relationships for guiding recognition, example of brain structure recognition in 3D MRI”, Pattern Recognit. Lett. 26(4), 2005, 449–457.
  • [34] B. Alfano, M. Ciampi, G. De Pietro, “A wavelet-based algorithm for multimodal medical image fusion”, Int. Conf. Semant. Digit. Media Technol., Springer, 4816(2007), 2007, 117–120.
  • [35] K. Yuanyuan, L. Bin, T. Lianfang, M. Zongyuan, “Multi-modal medical image fusion based on wavelet transform and texture measure”, Control Conf., 2007. Chinese, IEEE, 2007, 697–700.
  • [36] Q.P. Zhang, M. Liang, W.C. Sun, “Medical diagnostic image fusion based on feature mapping wavelet neural networks”, Image Graph. (ICIG’04), Third Int. Conf., IEEE, 2004: pp. 51–54.
  • [37] Q.P. Zhang, W.J. Tang, L.L. Lai, W.C. Sun, K.P. Wong, “Medical diagnostic image data fusion based on wavelet transformation and self-organising features mapping neural networks, Mach. Learn. Cybern. 2004. Proc. 2004 Int. Conf., IEEE, 2004: pp. 2708–2712.
  • [38] G. Quellec, M. Lamard, G. Cazuguel, B. Cochener, C. Roux, “Wavelet optimization for content-based image retrieval in medical databases, Med. Image Anal. 14(2), 2010, 227–241.
  • [39] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.M. Jodoin, H. Larochelle, “Brain tumor segmentation with deep neural networks”, Med. Image Anal. 35(2017), 2017, 18–31.
  • [40] K.M. Pohl, E. Konukoglu, S. Novellas, N. Ayache, A. Fedorov, I.F. Talos, A. Golby, W.M. Wells, R. Kikinis, P.M. Black, “A new metric for detecting change in slowly evolving brain tumors: Validation in meningioma patients”, Neurosurgery. 68(1), 2011, 225–233.
  • [41] S. Bauer, R. Wiest, L.-P. Nolte, M. Reyes, “A survey of MRI-based medical image analysis for brain tumor studies”, Phys. Med. Biol. 58(13), 2013, R97–R129.
  • [42] E.D. Angelini, J. Delon, A.B. Bah, L. Capelle, E. Mandonnet, “Differential MRI analysis for quantification of low grade glioma growth”, Med. Image Anal. 16(1), 2012, 114–126.
  • [43] K.F. Schmidt, M. Ziu, N.O. Schmidt, P. Vaghasia, T.G. Cargioli, S. Doshi, M.S. Albert, P.M. Black, R.S. Carroll, Y. Sun, “Volume reconstruction techniques improve the correlation between histological and in vivo tumor volume measurements in mouse models of human gliomas”, J. Neurooncol. 68(2004), 2004, 207–215.
  • [44] J.P. Feldman, R. Goldwasser, “A mathematical model for tumor volume evaluation using two-dimensions”, Journal Appl. Quant. Methods, 4(4), 2009, 455–462.
  • [45] M.M. Tomayko, C.P. Reynolds, “Determination of subcutaneous tumor size in athymic (nude) mice”, Cancer Chemother. Pharmacol. 24(1989), 1989, 148–154.
  • [46] X. Du, J. Dang, Y. Wang, S. Wang, T. Lei, “A parallel nonrigid registration algorithm based on B-spline for medical images”, Comput. Math. Methods Med. 2016.
  • [47] P.J. Baldevbhai, R.S. Anand, “Color Image Segmentation for Medical Images using L * a * b * Color Space”, J. Electron. Commun. Eng., 1(2), 2012, 24–45.
  • [48] V.S. Rathore, M.S. Kumar, A. Verma, “Colour based image segmentation using L * A * B * colour space based on genetic algorithm”, Int. J. Emerg. Technol. Adv. Eng. 2(6), 2012, 156–162.
  • [49] D. Barboriak, The cancer imaging archive, doi.org/10.7937/K9/TCIA.2015.VOSN3HN1.
  • [50] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, F. Prior, “The cancer imaging archive (TCIA): Maintaining and operating a public information repository”, (2013) 1045–1057. doi:10.1007/s10278-013-9622-7.