Yeni Eu(III) kompleksinin sentezlenmesi ve fotofiziksel özellikleri

Bu çalışmada, oksijen donör ligandı kullanılarak yeni Eu(III) içeren lantanit kompleksi hidrotermal yöntem ile sentezlenmiş ve tek kristal X-ışını kırınımı, element analizi, katı UV-Vis spektroskopisi, FT-IR ve fotolüminesans özellikleri ile karakterize edilmiştir.  Eu(III) kompleksinin [C7H9EuO9S](1) kristal yapısı sekiz oksijen atomu ile koordine olduğunu göstermektedir.  Burada altı oksijen atomu ssa- anyonik ligandından ve iki oksijen atomu ise koordine su moleküllerinden gelmektedir.  Kompleks 1, ssa- ligandının karboksil ve sülfonat grupları ile köprü kurarak bir-boyutlu zincir oluşturmaktadır.  Bir boyutlu zincirler ssa- ligandları ile birlikte iki-boyutlu dalga benzeri tabakalar oluşturaktadır.  Tüm bu dalga benzeri tabakalar güçlü hidrojen bağı etkileşimleri üç-boyutlu mimari ile sonuçlanmıştır. Buna ek olarak, kompleks (1)’ in katı durum fotolüminesans özellikleri oda sıcaklığında araştırılmıştır. Kompleks için anten etkisi ile dolaylı enerji transfer mekanizması detaylı olarak araştırılmıştır.

Synthesis and photophysical properties of new Eu(III) complex

In this study, the new Eu(III) complex was hydrothermally synthesized using oxygen donor ligand and characterized by single crystal X-ray diffraction, elemental analysis, solid UV-Vis spectroscopy, FT-IR and photoluminescence properties.  The crystal structure analysis of complex [C7H9EuO9S](1) indicates that the central lanthanide ions are coordinated by eight oxygen atoms in which six oxygen atoms from four ssa- anionic ligands and two oxygen atoms from a coordinated water molecules.  Complex 1 bridged by oxygen atoms from carboxyl and sulfonate groups of the ssa- ligands are formed in 1D chains.  The 1D chains are linked together with ligand ssa- to form a 2D wave-like layers.  All these wave-like layers are further interlinked via strong hydrogen bonding interaction resulting in 3D architecture.  Additionally, solid state photoluminescence properties of complex 1 have been investigated in room temperature.  The indirect energy transfer mechanism via an Antenna effect in complex 1 has been investigated in detail.

___

  • [1] Oylumluoglu, G., Coban, M.B., Kocak, C., Aygun, M. and Kara, H., 2-and 1-D coordination polymers of Dy(III) and Ho(III) with near infrared and visible luminescence by efficient charge-transfer antenna ligand, Journal of Molecular Structure, 1146, 356– 364, (2017).
  • [2] Yahsi, Y., Ozbek, H., Aygun, M. and Kara, H., Crystal structure and photoluminescence properties of a new Cd II coordination polymer catena -poly[bis[4-bromo-2-({[2- (pyrrolidin-1- yl)ethyl]imino}methyl)phenolato-κ 3 N , N ′, O]di-μ 3 -chlorido-di-μ 2 -chloridobis(methanol-κ O )tricadmium(II)], Acta Crystallographica Section C Structural Chemistry, 72, 426–431, (2016).
  • [4] Gungor, E., 3-D polymeric structure formed by hydrogen bonds of copper (II) complex, Molecular Crystals and Liquid Crystals, 642, 21–28 (2017).
  • [5] Gungor, E., A new stepped tetranuclear copper(II) complex: Synthesis, crystal structure and photoluminescence properties, Acta Crystallographica Section C Structural Chemistry, 73, 393–398, (2017).
  • [6] Coban, M.B., Kocak, C., Kara, H., Aygun, M. and Amjad, A., Magnetic properties and sensitized visible and NIR luminescence of Dy III and Eu III coordination polymers by energy transfer antenna ligands, Molecular Crystals and Liquid Crystals, 648, 202– 215, (2017).
  • [7] Li, X., Lu, Y., Bing, Y. and Zha, M., Synthesis , Photoluminescent , and Magnetic Properties of Two Lanthanide Sulfosalicylate Complexes, Synthesis and Reactivity in Inorganic, Metal-Organic, and NanoMetal Chemistry, 42, 698–704, (2012).
  • [8] Zhou, R.-S., Ye, L., Ding, H., Song, J-F., Xu, X-Y. and Xu, J-Q., Syntheses, structures, luminescence, and magnetism of four 3D lanthanide 5-sulfosalicylates, Journal of Solid State Chemistry, 181, 567–575, (2008).
  • [9] Coban, M.B., Amjad, A., Aygun, M. and Kara, H., Sensitization of HoIII and SmIII luminescence by efficient energy transfer from antenna ligands: Magnetic, visible and NIR photoluminescence properties of GdIII, HoIII and SmIII coordination polymers, Inorganica Chimica Acta, 455, 25–33, (2017).
  • [10] Ay, B., Yildiz, E. and Kani, İ., Two novel isostructural and heteroleptic Nd(III) and Dy(III)-organic frameworks constructed by 2,5-pyridinedicarboxylic acid and in situ generated 2-pyridinecarboxylic acid: Hydrothermal synthesis, characterization, photoluminescence properties and hetero, Polyhedron, 130, 165–175, (2017).
  • [11] Allendorf, M.D., Bauer, C.A., Bhakta, R.K. and Houk, R.J.T., Luminescent metal– organic frameworks, Chemical Society Reviews, 38, 1330–1352, (2009).
  • [12] Dang, S., Sun, L-N.,Zhang, H-J., Guo, X-M., Li, Z-F., Feng, J., Guo, H-D. and Guo, Z-Y., Near-Infrared Luminescence from Sol−Gel Materials Doped with Holmium(III) and Thulium(III) Complexes, The Journal of Physical Chemistry C, 112, 13240–13247, (2008).
  • [13] Beeby, A., Botchway, S.W., Clarkson, I.M., Faulkner, S., Parker, A.W., Parker, D. and Williams, J.A.G., Luminescence imaging microscopy and lifetime mapping using kinetically stable lanthanide(III) complexes, Journal of Photochemistry and Photobiology B: Biology, 57, 83–89, (2000).
  • [14] Zhao, J., Zhao, J., Zhu, G-H., Xie, L-Q., Wu, H-L., Zhou, A-J., Wu, Z-Y., Wang, J., Chen, Y-C. and Tong, M-L., Magnetic and luminescent properties of lanthanide coordination polymers with asymmetric biphenyl-3,2′,5′-tricarboxylate, Dalton Transactions, 44, 14424–14435, (2015).
  • [15] Yenikaya, C., Sari, M., Lkimen, H., Bülbül, M. and Büyükgüngör, O., Synthesis and characterization of a novel amino salicylato salt and its Cu(II) complex and their inhibition studies on carbonic anhydrase isoenzymes, Polyhedron, 30, 535–541, (2011).
  • [16] Lu, Z.D., Wen, L.L., Yao, J., Zhu, H.H. and Meng, Q.J., Two types of novel layer framework structures assembled from 5- sulfosalicylic acid and lanthanide ions, Crystal Engineering Communications, 8, 847–853, (2006).
  • [17] Starynowicz, P., Synthesis and crystal structure of europium(II) dihydrogen bis(sulfosalicylate) pentahydrate [Eu(C7H5O6S)2(H2O)5]∞, Journal of Alloys and Compounds,305, 117–120, (2000).
  • [18] Clark, R.C. and Reid, J.S., The analytical calculation of absorption in multifaceted crystals, Acta Crystallographica Section A Foundations and Advances, 51, 887–897, (1995).
  • [19] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 42, 339–341, (2009).
  • [20] Sheldrick, G.M., A short history of SHELX, Acta Crystallographica Section A: Foundations of Crystallography, 64, 112– 122, (2007).
  • [21] Spek, A.L., Structure validation in chemical crystallography, Acta Crystallographica Section D: Biological Crystallography, 65, 148–155, (2009).
  • [22] Li, X., Xie, Z., Lin, J. and Cao, R., Lanthanide-organic frameworks constructed from multi-functional ligands: Syntheses, structures, near-infrared and visible photoluminescence properties, Journal of Solid State Chemistry,182, 2290–2297, (2009).
  • [23] Coban, M.B., Erkarslan, U., Oylumluoglu, G., Aygun, M. and Kara, H., Hydrothermal synthesis, crystal structure and Photoluminescent properties; 3D Holmium(III) coordination polymer, Inorganica Chimica Acta, 447, 87–91, (2016).
  • [24] Acar, Y., Photoluminescence properties of Gd(III) and Ce(III) lanthanide based metal organic frameworks, Anadolu University Journal of Science and Technology A - Applied Science and Engineering,17, 754– 754, (2016).
  • [25] Ilmi, R. and Iftikhar, K., Structure elucidation by sparkle/RM1, effect of lanthanide contraction and photophysical properties of lanthanide(III) trifluoroacetylacetonate complexes with 1,10-phenanthroline, Journal of Photochemistry and Photobiology A: Chemistry, 325, 68–82, (2016).
  • [26] Zhou, X., Zhao X., Wang, Y., Wu, B., Shen, J., Li, L. and Li, Q., Eu(III) and Tb(III) Complexes with the Nonsteroidal AntiInflammatory Drug Carprofen: Synthesis, Crystal Structure, and Photophysical Properties, Inorganic Chemistry, 53, 12275–12282, (2014).
  • [27] Shen, H.-Y., Wang, W.-M., Gao, H.-L. and Cui, J.-Z., Near-infrared luminescence and SMM behaviors of a family of dinuclear lanthanide 8-quinolinolate complexes, The Royal Society of Chemistry Advances, 6, 34165–34174, (2016).
  • [28] Feng, X., Feng, Y-Q., Chen, J. J., Ng, S-W., Wang, L-Y. and Guo, J-Z., Reticular threedimensional 3d–4f frameworks constructed through substituted imidazole-dicarboxylate: syntheses, luminescence and magnetic properties study, Dalton Transactions, 44, 804–816, (2015).
  • [29] Han, Y., Fu, L., Mafra, L. and Shi, F.-N., Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium–yttrium organic frameworks, Journal of Solid State Chemistry, 186, 165–170, (2012).
  • [30] Teixeira, J.A., Nunes, W.D.G., Nascimento, A.L.C.S., Colman, T.A.D., Caires, F.J., Galico, D.A. and Ionashiro, M., Synthesis, thermoanalytical, spectroscopic study and pyrolysis of solid rare earth complexes (Eu, Gd, Tb and Dy) with p-aminobenzoic acid, Journal of Analytical and Applied Pyrolysis, 121, 267–274, (2016).
  • [31] Liu, D.D., Chen, Y-G., Zhang, C-J., Meng, H-X., Zhang, Z-C. and Zhang, C-X., Effect of ring coordination of pyridine-3,5- dicarboxylate and metatungstate to Ln ions on metatungstate structure: Synthesis, structure and optical property of four new compounds, Journal of Solid State Chemistry, 184, 1355–1360, (2011).
  • [32] De Moura, A.P., De Oliveira, L.H., Paris, E.C., Li, M.S., Andrés, J., Varela, J. A., Longo, E. and Rosa, I.L.V., Photolumiscent properties of nanorods and nanoplates Y2O3:Eu3+ , Journal of Fluorescence, 21, 1431–1438, (2011).
  • [33] Xu, W., Zhang, C.-J., Wang, H. and Wang, Y., Two Novel Two-Dimensional Lanthanide (III) Coordination Polymers Constructed from Isonicotinic Acid and Iminodiacetic Acid: Synthesis, Structure, and Luminescence Properties, Journal of Cluster Science, 28, 2005–2015, (2017).
  • [34] Liu, C.-B., Li, Q., Wang, X., Che, G.-B. and Zhang, X.-J., A series of lanthanide (III) coordination polymers derived via in situ hydrothermal decarboxylation of quinoline2,3-dicarboxylic acid, Inorganic Chemistry Communications, 39, 56–60, (2014).
  • [35] Wu, Q-R., Wang, J-J., Hu, H-M., Shangguan, Y-Q., Fu, F., Yang, M-L., Dong, F-X. and Xue, G-L., A series of lanthanide coordination polymers with 4′-(4- carboxyphenyl)-2,2′:6′,2″-terpyridine: Syntheses, crystal structures and luminescence properties, Inorganic Chemistry Communications, 14, 484–488, (2011).
  • [36] Ma, P., Wan, R., Si, Y., Hu, F., Wang, Y., Niu, J. and Wang, J., Double-malate bridging tri-lanthanoid cluster encapsulated arsenotungstates: syntheses, structures, luminescence and magnetic properties, Dalton Transactions, 44, 11514–11523, (2015).
  • [37] Jiao, C-Q., Zhang, J-C., Zhao, Y., Sun, Z-G., Zhu, Y-Y., Dai, L-L., Shi, S-P. and Zhou, W., Lanthanide(III) oxalatophosphonates: syntheses, crystal structures and luminescence properties, Dalton Transactions, 43, 1542–1549, (2014).
  • [38] Dang, S., Sun, L-N., Song, S-Y., Zhang, H-J., Zheng, G-L., Bi, Y-F., Guo, H-D., Guo, Z-Y. and Feng, J., Syntheses, crystal structures and near-infrared luminescent properties of holmium (Ho) and praseodymium (Pr) ternary complexes, Inorganic Chemistry Communications, 11, 531–534, (2008).
  • [39] Dang, S., Yu, J., Yu, J., Wang, X., Sun, L., Feng, J., Fan, W. and Zhang, H., Novel Holmium (Ho) and Praseodymium (Pr) ternary complexes with fluorinated-ligand and 4,5-diazafluoren-9-one, Materials Letters, 65, 1642–1644, (2011).
  • [40] Dang, S., Yu, J., Wang, X., Sun, L., Deng, R., Feng, J., Fan, W. and Zhang, H., NIRluminescence from ternary lanthanide [HoIII, Pr III and TmIII] complexes with 1-(2- naphthyl)-4,4,4- trifluoro-1,3-butanedionate, Journal of Luminescence, 131, 1857–1863, (2011).