Fe ve Fe - %25 Al için maksimum streslerin (hkl) düzlemlerinde teorik olarak hesaplanması

Oda sıcaklığında Fe ve Fe-% 25 Al (Fe3Al) kristalleri bcc yapıda olup, deneysel örgü parametreleri (a0)  2.87 Å ve 2,8964 Å dur. İç etkileşme enerjileri birbirlerine çok yakın olan Fe ve Fe3Al kristallerinin, fiziksel özellikleri birçok yönden incelenmektedir. Temel fiziksel parametreler (hkl) kristal düzlemlerinde, farklı büyüklüklere sahiptir. Bu çalışmada, elastik parametrelerden, maksimum stressler (Thkl),   hem Fe hem de Fe3Al kristalleri için (hkl) düzlemlerinde incelendi. Bunun için, öncelikle Wien2k yöntemi kullanılarak ikinci derece elastik sabitler (C11, C12 ve C44) kübik simetri için hesaplandı. Kristallerin örgü parametreleri ve saçılma açıları (2θ) pik genişliklerini (βhkl) bulmak için kullanıldı. Düzlemlere göre hesaplanan bazı elastik parametreler, farklı denklemlerden hesaplanan sonuçlarla karşılaştırıldı. Kristal boyutlarına (Dhkl) bağlı olan dislokasyon yoğunluğunlukları (δhkl) da (hkl) düzlemlerinde incelendi. Elde edilen tüm sonuçlar, (hkl) düzlemleri ve bazı [hkl] doğrultularına göre yorumlanarak, yakın çalışma sonuçları ile karşılaştırıldı. Bu tarz analitik incelemelerin (222) düzlemine kadar genişletilmesinin yeterli olabileceği sonucuna ulaşıldı.

Theoretical calculation of maximum stresses (hkl) planes for Fe and Fe - 25% Al

At room temperature, Fe and Fe-25% Al (Fe3Al) crystals are in bcc structure and the experimental lattice parameters (a0) are 2.87 Å and 2.8964 Å. The physical properties of Fe and Fe3Al crystals, whose internal interaction energies are very close to each other, are investigated from many perspectives. The basic physical parameters have different sizes in the (hkl) crystal planes. In this study, the maximum stresses (Thkl) were investigated from the elastic parameters in the (hkl) planes for both Fe and Fe3Al crystals. For this, second order elastic constants (C11, C12 and C44) were calculated first for cubic symmetry by using the Wien2k method. The lattice parameters of the crystals and scattering angles (2θ) were used to find the peak widths (βhkl). Some elastic parameters calculated with respect to the planes were compared with the results calculated from different equations. The dislocation densities (δhkl) related to crystal dimensions (Dhkl) were also studied in planes (hkl). All the obtained results were interpreted according to (hkl) planes and some [hkl] directions and compared with the results of other close studies. It has been reached that such analytical investigations could be extended to the (222) plane.

___

  • [1] Gargicevich, D., Galvan Josa, V.M., Blanco, C., Lambri, O.A. and Cuello, G.J., Structure determination of Fe-Al-Ge alloys. Journal of Physics Conference Series, 663, 01204 (2015).
  • [2] Alonso, P.R., Gargano, P.H., Bozzano, P.B., Ramirez-Caballero, G.E., Balbuena, P.B. and Rubiolo, G.H., Combined ab initio and experimental study of A2+L21 coherent equilibria in the Fe-Al-X (X=Ti, Nb, V) systems. Intermetallics, 19, 1157-1167 (2011).
  • [3] Ucgun, E. and Ocak, H.Y., Electronic properties of austenite and martensite Fe9%Mn alloys. Central Eurpean Journal of Physics, 6, 4, 880-811 (2008).
  • [4] Bremers, H., Hesse, J., Ahlers, H., Sievert, J. and Zachmann, D., Order and magnetic properties of Fe89-xMn11Alx alloys: magnetization measurement and X-ray diffraction. Journal of Alloys and Compounds, 366, 67-75 (2004).
  • [5] Eumann, M., Sauthoff, G. and Palm, M., Phase equilibria in the Fe–Al–Mo system – Part I: Stability of the Laves phase Fe2Mo and isothermal section at 800°C. Intermetallics, 16, 706-716 (2008).
  • [6] Kim, H., Suh, D. and Kim, N.J., Fe-Al-Mn-C Lightweight structural alloys: a review on the microstructures and mechanical properties. Science Technology Advance Mater, 14, 014205 (2013).
  • [7] Lung, C.W. and March, N.H., Mechanical Properties of Metals : Atomistic and Fractal Continuum Approaches, World Scientific Pub. Co. Inc., Singapore, (1999).
  • [8] Milstein, F., Mechanical stability of crystal lattices with two-body ınteractions. Physcal Review B, 2, 2, 512-518 (1970).
  • [9] Milstein, F. and Rasky, D.J., Volumetric and structural contributions to the ınteratomic potentials and elstic moduli of cubic metals. Physcal Review B, 33, 4, 2341-2349 (1986).
  • [10] Borchi, E., Bruzzi, M., Biggeri, U., Furetta, C. and Lemeilleur, F., Elastic moduli of polycrystalline diamond. European Organization for Nuclear Research, 94, 20, (1994).
  • [11] Gu, J., Gu, S., Xue, L., Wu, S. and Yan, Y., Microstructure and mechanical properties of in-situ Al13Fe4/Al composites prepared by mechanical alloying and spark plasma sintering. Material Sciences and Engineerinig, 558, 684-691 (2012).
  • [12] Skiba, T., Haušild, P., Karlík, M., Vanmeensel, K. and Vleugels, J., Mechanical properties of spark plasma sintered FeAl intermetallics. Intermetallics, 18, 1410-1414 (2010).
  • [13] Goulart, P.R., Spinelli, J.E., Cheung, N. and Gargia, A., The effect of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al-Fe alloys. Materials Chemistry and Physics, 119, 1-2, (2010).
  • [14] Leamy, H.J., The elastic stiffness coefficients of ıron-aluminium alloys-II the effect of long range order. Acta Metallurciga, 15, 12, 1839-1851 (1967).
  • [15] Rudman, P.S., A zeroth approximation calculation of order with application to the phase diagram. Acta Metallurciga, 8, 5, 321- 327 (1960).
  • [16] Milstein, F., Morse function description of anharmonicity in pressure-volume relarions of cubic metals. Physica Status Solidi, 48, 2, 681-688 (1971).
  • [17] Najafabadi, R. and Kalonji, G., Mechanical stability criteria for ınteratomic potential functions used in computer simulations of materials. Acta Metallurciga, 36, 4, 917-927 (1988).
  • [18] Jamal, M., Asadabadi, S.J., Ahmad, I. and Aliabad, H.A., Elastic constants of cubic crystals. Computational Material Sciences 95, 592-599 (2014).
  • [19] Gonzales-Ormeño, G.P., and Petrilli, M.H., Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad, 26, 4, 573-582 (2002).
  • [20] Zhang, H., Punkkinen, M.P.J., Johansson, B., Hertzman, S. and Vitos, L., Single-crystal elastic constants of ferronagnetic bcc Febased random alloys from first-principles theory. Physcal Review B, 81, 184105 (2010).
  • [21] Arıkan, N., Ersen, M., Ocak, H.Y, Iyıgör, A, Candan, A., Uğur, Ş., Uğur G., Khenata, R. and Varshney, D., Ab initio study of phonon dispersion and elastic properties of L12 intermetallics Ti3Al and Y3Al. Modern Physics Letters B, 27, 30, 1350224 (2013).
  • [22] Bai, Y., Xing, J., Wu, H., Liu, Z., Gao, Y. and Ma, S., Study on Preparation and mechanical Properties of Fe3Al-20wt.%Al2O3 Composites. Materials and Desing, 39, (2012).
  • [23] Ocak H.Y., Uçgun E. ve Ünal R., “Experimental and first-principles investigation of the crystal structure of powder metallurgy Al-1.1Sc and Al-2Sc alloys”, Transactions of Nonferrous Metals Society of China, 23, 3020-3026, (2013).
  • [24] Wang, J., Xing, J., Cao, L., Su, W. and Gao, Y., Dry sliding wear behavior of Fe3Al alloys prepared by mechanical alloying and plasma activated sintering. Wear, 268, 3-4, (2010).
  • [25] Eumann, M., Palm, M. and Sauthoff, G., Alloys based on Fe3Al or FeAl with strengthening Mo3Al precipitates. Intermetallics, 12, 625-633 (2004).
  • [26] Nan-xian, C., Atomistic analysis of the fieldion micropcopy image of Fe3Al. Physcal Review B, 57, 22, 8842 (1998).
  • [27] Milstein, F. and Chantasiriwan, S., Theoretical study of the response of 12 cubic metals to uniaxialloading. Physcal Review B, 58, 10, 6006 (1998).
  • [28] Yue-Lin, L., Li-Jiang, G. and Shuo, J., Abinitio investigation on mechanical properties of copper. Chinese Physics B, 21, 9, 1045 (2004).
  • [29] Milstein, F., Hill, R. and Huang, K., Theory of the Response of an Cubic Crystals to [111] Loading. Physcal Review B , 21, 10, 4282- 4291 (1980).
  • [30] Blaha P., Schwarz K.,. Madsen G.K.H, Kvasnich D. ve Luitz J., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Technical Universty, Wien, (2001).
  • [31] Karakose E. ve Keskin M., Structural investigations of mechanical properties of Al based rapidly solidified alloys. Materials and Design, 32, 4970–4979 (2011).
  • [32] Friák, M., Deges, J., Krein, R. Frommeyer, G. and Neugebauer, J., Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries, Intermetallics, 18, 1310-1315 (2010).
  • [33] Osman Örnek, L12 fazda Rh3La bileşiğinin ab inito çalışması, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20, 3, 591-595 (2016).
  • [34] Cullity, B.D, X- Işınları Difraksiyonu, (Çev. Sümer A.) İTÜ Yayınları, (1966).
  • [35] Taylor A. and Jones R.M., Constitution and magnetic properties of ıron-rich ıronaluminum alloys. Journal of Physics and Chemistry of Solids, 6, 16-37, (1958).
  • [36] Peiqing L., Yupeng W., Ruijiao L., Yang Z. and Yang Y., Effect of Mn element on microstructure and mechanical properties of bulk nanocrystalline Fe3Al based materials prepared by aluminothermic reaction, Materials Science and Engineering A, 527, 2313–2319 (2010).
  • [37] Schmid E. and Boas W., Plasticity of Crystals. Hughes F.A. and Co. Ltd., London. (1950).
  • [38] Hualei Z, Marko P.J. Punkkinen, Johansson B. and Vitos, L., Theoretical elastic moduli of ferromagnetic bcc Fe alloys, Journal of Physics: Condensed Matter, 22, 275402 (2010).
  • [39] Foruts, E., Morris, D.G. and Muñoz-Morris, M.A., Evaluation of elastic modulus and hardness of FeeAl base intermetallics by nano-indentation techniques, Intermetallics 38, 1-3 (2013).
  • [40] Zamanzade, M., Vehoff, H. and Barnoush, A. Effect of chromium on elastic and plastic deformation of Fe3Al intermetallics, Intermetallics 41,28-34(2013).
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-7985
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1999
  • Yayıncı: Balıkesir Üniversitesi
Sayıdaki Diğer Makaleler

Optik fiber dalga kılavuzlarının yapı parametrelerinin incelenmesi

Ali ÇETİN, Hamza Yaşar OCAK

BaCeO3'in rhombohedral-tetragonal faz geçişi için Raman frekansından sıcaklığın bir işlevi olarak hesaplanan sönüm sabiti, dielektrik duyarlılık, ters gevşeme zamanı ve aktivasyon enerjisi

Ali KİRACI, Hamit YURTSEVEN

Asılı ve tek damla yöntemiyle liyotropik sıvı kristallerde yüzey gerilimlerinin belirlenmesi

Pınar ÖZDEN, Nejmettin AVCI

Manyezit cevher yüzeyindeki dağılım türlerinin belirlenmesi

Tuğba ÖZBEY, Mehmet BAYIRLI

Yeni Eu(III) kompleksinin sentezlenmesi ve fotofiziksel özellikleri

Mustafa Burak COBAN

β Lyrae türü örten çift yıldız LL Com: Işık eğrisi analizi ve yörünge dönemi değişimi

Burcu ÖZKARDEŞ, Gökçe Zeynep ÖZALP

Kübik AlLiSi yapıdaki XMnSb (X=Au ve Ir) bileşiklerinin yapısal, mekanik ve dinamik özellikleri

Selgin AL, Nihat ARIKAN

Endometrium, serviks ve larinks kanserlerinin yoğunluk ayarlı radyoterapi tekniğinde doz homojenite indeksinin kantitatif olarak değerlendirilmesi ve homojenite indeks değerlerinin karşılaştırılması

Ebru CANTÜRK, Gözde TOPGÜL, Orhan GÜRLER, Sema TUNÇ, Candan DEMİRÖZ ABAKAY, Meral KURT, Sibel KAHRAMAN ÇETİNTAŞ

[Eu(1,2,4-BTC)], (1,2,4-BTC=1,2,4- benzen trikarboksilik asit) koordinasyon polimerinin kristal yapı ve optik özelliklerinin araştırılması

Adem DÖNMEZ, Uğur ERKARSLAN, Şehmuz KARADENİZ

Gözenekli malzemelerde Pr(III) iyonlarının anten etkisi ile duyarlılaştırılması

Melek ÖZDAŞ BÜTÜN