Parçacık Fiziğinde Anomaliler

Parçacık fiziğinde standart model, güçlü bir kuramsal altyapıya sahip olup yıllar içerisinde hemen tüm deneysel testlerden geçmeyi başarmıştır. Öte yandan SM çerçevesinin ötesinde keşfedilmeyi bekleyen fizik olduğu da parçacık fiziği camiasında genel olarak kabul gören bir durumdur. Bilimin her alanında, kısaca ölçüm ve kuramsal öngörü arasındaki uyuşmazlık olarak tanımlanabilecek olan anomaliler doğa hakkında öğrenebileceğimiz yeni bilgiler olduğunun işaretçileri olabilir. Bu çalışmada SM ötesi fizik hakkında işaretler taşıma ihtimali bulunan başlıca iki anomali, yani müon g-2 anomalisi ve LHCb → * anomalisi incelenmektedir

Anomalies in particle physics

The Standard Model of particle physics has a strong theory structure and did prove exceedingly successful in almost all experimental tests through the years. It is also commonly accepted among the particle physics community that there is physics beyond the Standard Model waiting to be discovered. In every field of science, anomalies; which can briefly be defined as the disagreement between measurements and theoretical predictions; might point to new information we can learn about nature. In this study, we review two anomalies that might be signaling beyond the Standard Model physics: The muon g-2 anomaly, and the LHCb → * anomaly

___

  • Kluger, J., Einstein Was Right All Along: 'Faster-Than-Light' Neutrino Was Product of Error (2002). http://newsfeed.time.com/2012/02/22/einstein-was-right- all-along-faster-than-light-neutrino-was-product-of-error/, (04.12.2014).
  • Garwin, R.L., Hutchinson, D.P., Penman, S. and Shapiro, G., Accurate Determination of the µ Magnetic Moment, Physical Review 118, 271, (1960).
  • Charpak, G., et al., Measurement of the Anomalous Magnetic Moment of the + Muon, Physical Review Letters 6, 128, (1961); Charpak, G., et al., A new limit to the electric dipole moment of the muon, Nuovo Cimento 22, 1043, (1961); Charpak, G., et al., The anomalous magnetic moment of the muon, Nuovo Cimento 37, 1241, (1965).
  • Charpak, G., et al., A new measurement of the anomalous magnetic moment of the muon, Physics Letters 1, 16, (1962).
  • Bailey, J., et al., Precision measurement of the anomalous magnetic moment of the muon, Physics Letters B 28, 287, (1968).
  • Bailey, J., et al., New Measurement of (G-2) of the Muon, Physics Letters B 55, 420, (1975).
  • Bailey, J., et al., Final Report on the CERN Muon Storage Ring Including the Anomalous Magnetic Moment and the Electric Dipole Moment of the Muon, and a Direct Test of Relativistic Time Dilation, Nuclear Physics B 150, 1, (1979).
  • Brown, H.N., et al. (Muon (g - 2) Collaboration), Improved measurement of the positive muon anomalous magnetic moment, Physical Review D 62, 091101, (2000).
  • Brown, H.N., et al. (Muon (g - 2) Collaboration), Precise Measurement of the Positive Muon Anomalous Magnetic Moment, Physical Review Letters 86, 2227, (2001).
  • Bennett, G.W., et al. (Muon (g - 2) Collaboration), Measurement of the Positive Muon Anomalous Magnetic Moment to 0.7 ppm, Physical Review Letters 89, 101804, (2002).
  • Bennett, G.W., et al. (Muon (g-2) Collaboration), Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm, Physical Review Letters 92, 161802, (2004).
  • Bennett, G.W., et al. (Muon g - 2 Collaboration), Final report of the E821 muon anomalous magnetic moment measurement at BNL, Physical Review D 73 072003, (2006).
  • Dirac, P. A. M., The Quantum Theory of the Electron, Proceedings of Royal Society A 117 610, (1928); Dirac, P. A. M., The Quantum Theory of the Electron, Part II, Proceedings of Royal Society A 118 351, (1928).
  • NIST (2012), CODATA values of the fundamental constants. (04.12.2014)
  • Zhang, Z., Muon g-2: a mini review, LAL 07-88, arXiv:0801.4905, (2008).
  • Aoyama, T., Hayakawa, M., Kinoshita, T. and Nio, M., Complete Tenth-Order QED Contribution to the Muon g-2, Physical Review Letters 109, 111808, (2012).
  • Czarnecki, A., Marciano, W. J. and Vainshtein, A., Refinements in electroweak contributions to the muon anomalous magnetic moment, Physical Review D67, 073006 [Erratum-ibid (2006). D73, 119901], (2003).
  • Gnendiger, C., Stockinger, D. and Stockinger-Kim, H., The electroweak contributions to (g-2)µ after the Higgs boson mass measurement, Physical Review D88, 053005, (2013).
  • Gourdin, M. and De Rafael, E., Hadronic contributions to the muon g-factor, Nuclear Physics B 10, 667, (1969).
  • Brodsky, S.J. and De Rafael, E., Suggested Boson-Lepton Pair Couplings and the Anomalous Magnetic Moment of the Muon, Physical Review 168, 1620, (1968).
  • Jegerlehner, F. and Szafron, R., ? 0 -? mixing in the neutral channel pion form factor F e ? and its role in comparing e + e - with ? spectral functions, European Physical Journal C71, 1632, (2011).
  • Hagiwara, K., Liao, R., Martin, A. D., Nomura, D. and Teubner, T., (g - 2)µ and ?(MZ2) re-evaluated using new precise data, Journal of Physics G38, 085003, (2011).
  • Prades, J., De Rafael, E. and Vainshtein, A., Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment, Advanced series on directions in high energy physics, Vol.20, p. 303-318, World Scientific, [arXiv:0901.0306 [hep-ph]], (2009).
  • Miller, J.P., De Rafael, E., Roberts, B.L., Stöckinger, D, Muon (g - 2): Experiment and Theory, Annual Review of Nuclear and Particle Science 62 237-264, (2012).
  • Martin, Stephen P., A Supersymmetry Primer, Advanced Series on Directions in High Energy Physics, Vol 21 pp1-153, (2010).
  • Czarnecki, A. and Marciano, W.J., Muon anomalous magnetic moment: A harbinger for "new physics", Physical Review D64, 013014, (2001).
  • Soni, A, Ashutosh, K.A., Giri, A., Mohanta, R., Nandi, S., The Fourth family: A Natural explanation for the observed pattern of anomalies in B- CP asymmetries, Physics Letters B 683 (2010) 302-305, (2008)
  • Jegerlehner, F., Nyffeler, A., The Muon g-2, Physics Reports 477 1-110, (2009).
  • Pospelov, M., Secluded U(1) below the weak scale, Physical Review D80, 095002, (2009).
  • Tucker-Smith, D. and Yavin, I., Muonic hydrogen and MeV forces, Physical Review D83, 101702 (R), (2011).
  • Adcox, K., et al., PHENIX detector overview, Nuclear Instruments and Methods in Physics Research A 499, 469, (2003).
  • Adare, A., et al. (PHENIX Collaboration), Search for dark photons from neutral meson decays in p+p and d+Au collisions at ?sNN=200 GeV, arXiv:1409.0851, (2014).
  • Bennett, G.W., et al. (Muon (g-2) Collaboration), Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm, Physical Review Letters 92, 161802. http://muon-g-2.fnal.gov, (2004).
  • Bennett, G.W., et al. (Muon g - 2 Collaboration), Final report of the E821 muon anomalous magnetic moment measurement at BNL, Physical Review D 73 072003, (2006).
  • Mibe, T., et al., New g-2 experiment at J-PARC, Chinese Physics C Vol.34, No.6, 745 (2010).
  • Mibe, T., Muon g-2/EDM at J-PARC, SFB Workshop (g-2)mu Quo Vadis?, Berlin (2014).
  • Olive, K.A., et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014).
  • Aaij, R., et al. (LHCb Collaboration), Differential branching fraction and angular analysis of the decay B0 *0µ+µ-, Journal of Energy Physics 08 131, (2013)
  • Aaij, R, et al. (LHCb Collaboration), Measurement of Form-Factor-Independent Observables in the Decay B0 *0µ+µ-, Physical Review Letters 111, 191801, (2013)
  • Descotes-Genon, S., Hurth, T., Matias, J. and Virto, J., Optimizing the basis of B ->K*l+l- observables in the full kinematic range, Journal of Energy Physics 05 137, (2013).
  • Falkovski, A., On the Latest http://resonaances.blogspot.com.tr/2013/08/what-about-b-to-k-star-mu-mu.html (17.03.2015). anomaly in LHCb (2013),
  • Wei, J.-T., et al. (BELLE Collaboration), Measurement of the Differential Branching Fraction and Forward-Backward Asymmetry for B->K(*)l+l-, Physical Review Letters 103, 171801, (2009).
  • Lees, J., et al. (BaBar Collaboration), Measurement of branching fractions and rate asymmetries in the rare decays B->K(*)l+l-, Physical Review D 86, 032012, (2012).
  • Aaltonen, T., et al. (CDF Collaboration), Observation of the Baryonic Flavor- Changing Neutral Current Decay ?0b->?µ +µ-, Physical Review Letters 107, 201802, (2011).
  • Aaltonen, T., et al. (CDF Collaboration), Measurements of the Angular Distributions in the Decays B->K(*)µ+µ- at CDF, Physical Review Letters 108, 081807, (2012).
  • The CDF Collaboration, Precise Measurements of Exclusive b ->sµ+µ- Decay Amplitudes Using the Full CDF Data Set, CDF public note 10894, (2012).
  • ATLAS Collaboration, Angular Analysis of B0d *0µ+µ- with the ATLAS Experiment, ATLAS-CONF-2013-038, ATLAS- COM-CONF-2013-043, (2013).
  • The CMS Collaboration, Angular analysis and branching ratio measurement of the decay B0-> K*0µ+µ-, CMS-PAS-BPH-11-009, (2013).
  • Datta, A., Duraisamy, M. and Ghosh, D., Explaining the B->K*µ+µ- data with scalar interactions, Physical Review D 89, 071501(R), (2014).
  • Descotes-Genon, S., Matias, J. and Virto, J., Understanding the B->K*µ +µ- anomaly, Physical Review D 88, 074002, (2013).
  • Altmannshofer, W., Straub, D.M., New physics in B->K*µµ?, European Physical Journal C 73:2646, (2013).
  • Buras, A.J., De Fazio, F. and Girrbach, J., 331 models facing new b->sµ+µ- data, Flavour (267104)-ERC-55, BARI-TH/13-681, arXiv:1311.6729, (2013).
  • Jäger, S., Camalich, J.M., On B ->Vll at small dilepton invariant mass, power corrections, and new physics, arXiv:1212.2263, (2012).