Manyezit cevher yüzeyindeki dağılım türlerinin belirlenmesi

Doğada ve deneysel ortamda morfolojik özelliklere sahip ve istatistiksel olarak bilimsel araştırmaların konusu olan birçok yapı bulunmaktadır. Bu yapılardan biri manyezit cevher yüzeyindeki mangan dağılımlarıdır. Bu dağılımları araştırmak amacıyla manyezit cevher yüzeylerindeki makroskobik açıdan farklı özellik gösteren bölgeler ayrı ayrı incelenmiştir. Bu amaçla işgal edilme kesri f değeri, 0.159 ve 0.133 olan bölgelere ait parçacık dağılım grafikleri elde edilmiş ve yeni bir dağılım fonksiyonu olan  tanımlanmıştır. ρ, d ve q cevher yüzeyindeki dağılımları tanımlayan model parametreleridir. Buna göre, dendritik özellikteki mangan yapıları hiperbolik dağılım gösterirken, noktasal ya da bütün bir yapıdakiler gaussian dağılım göstermektedir. 

The determination of the types of the distribution on the magnesite ore

There are many structures in nature and in the experimental environment that have morphological characteristics and are statistically subject to scientific research. The one of these structures is manganese distributions on the magnesite ore surface. In order to investigate these distributions, the regions showing different properties macroscopically on magnesite ore surface have been investigated separately. For this purpose, the particle distribution graphs for the zones with the occupation fraction value f, 0.159 and 0.133 are obtained and a new distribution distribution function  is defined. ρ, d and q  are the model parameters that define the distributions in the ore surface. According to this, while the manganese structures having dendritic properties show hyperbolic distribution, having point or whole structure show gaussian distribution.

___

  • [1] Barbarasi, A.L. and Stanley, H.E., Fractal concepts in surface growth, Cambridge: Cambridge University Press, (1995).
  • [2] Vicsek, T., Fractal growth phenomena, Singapore: Word Scientific, (1992).
  • [3] Mandelbrot, B.B. and Wallis, J.R., Some long-run properties of geophysical records, Water Resource. Research., 5, 321-340, (1969).
  • [4] Fowler, A.D. and Roech, D.E., A model and simulation of branching mineral growth from cooling contacts and glasses, Mineralogical Magazine, 60, 595-601, (1996).
  • [5] Chopard, H., Herrmann, H.J. and Vicsek, T., Stucture and growth mechanism of mineral dendrites, Nature, 353, 409-412, (1991).
  • [6] Meakin P., Fractals, Scaling and Growth Far From Equilibrium, Cambridge: Cambridge University Press, (1998).
  • [7] Bayirli, M., The geometrical approach of the manganitive compound deposition on the surface of manganisite ore, Physica A, 353, 1-8, (2005).
  • [8] Xu, H., Chen, T. and Konishi, H., HRTEM investigation of trilling todorokite and nanophase Mn-oxides in manganese dendrites, American Mineralogist, 95, 556-562, (2010).
  • [9] Ng, T.F. and The, G.H., Fractal and shape analyses of manganese dendrites on vein quartz, Bulletin of the Geological Society of Malaysia, 55, 73-79, (2009).
  • [10] García-Ruiz, J.M., Otálora, F., SanchezNavas, A. and Higes-Rolando, F., The formation of manganese dendrites as the material record of flow structures, In Fractals and Dynamics Systems in Geosciences, Edited by J.H. Kruhl, Springer Verlag, 307-318, (1994).
  • [11] Schoedler, F., Element of Geology and Mineralogy, London: Joseph Griffin and Co., 56, (1851).
  • [12] Swartzlow, R.C., Two dimensional dendrites and their origin, The American Mineralogist, 19, 403-411, (1934).
  • [13] Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, (1983).
  • [14] Bayirli, M. and Ozbey, T., Numerical approaches about the morphological description parameters for the manganese deposits on the magnesite ore surface, Zeitschrift für Naturforsch, 68a, 405-411, (2013).
  • [15] Meakin, P., Diffusion-controlled deposition on surfaces: Cluster-size distribution, interface exponents and other properties, Physical Review B, 30, 4207-4214, (1984).
  • [16] Blott, J.S. and Pye, K., Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surface Processes Landforms, 26, 1237- 1248, (2001).
  • [17] Granqvist, C.G., Size distribution for ultrafine metal particles, Journal De Physique, 38, C2, C2-147-C2-150 (1977).
  • [18] Colas, R., On the variation of grain size and fractal dimension in an austenitic stainless steel, Material Characterization, 46, 353- 358, (2001).
  • [19] Rautio, H. and Silven, O., Average grain size determination using mathematical morphology and texture analysis, http://www.ee.oulu.fi/research/mvmp/mvg/f iles/pdf/mva98.pdf, (02.06.2016)
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-7985
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1999
  • Yayıncı: Balıkesir Üniversitesi