Lycopersicon Esculentum Mill. Fideciklerinin Bazı Makro ve Mikro Besin Elementleri Alım Düzeylerine Alüminyum Etkisinin Analitik ve Mikro Analitik Yöntemler İle İncelenmesi

Bu çalışmada Murashige-Skoog temel besi ortamlarında yetiştirilen 15 gün yaşlı Lycopersicon escu/entum Mill. cv. H2274 (domates) fideciklerinin bazı makro ve mikro besin elementleri alım düzeylerine artan konsantrasyonlarda uygulanan alüminyumun etkileri analitik ve mikro analitik yöntemler ile incelendi. Çalışmamızda besin çözeltilerine artan konsantrasyonlarda alüminyum uygulanması, L. escu/entum Mill. cv. H2274 (domates) fideciklerinin alüminyum içeriklerinde artışlara neden olurken, alınan alüminyumun büyük ölçüde köklerde birikim yaptığı görüldü. Besin çözeltilerine artan konsantrasyonlarda alüminyum ilavesi L. escu/entum Mill. cv. H2274 (domates) fideciklerinin toplam azot alımlarında çok belirgin bir farklılık yaratmazken, fıdeciklerin özellikle fosfor. kalsiyum, magnezyum ve sodyum alımlarında alüminyum ilavelerine bağlı olarak düzenli düşüşler gözlendi. Besin çözeltilerine 100 ppm alüminyum ilavesi fideciklerin toplam potasyum, demir ve kobalt alımlarında belirgin düşüşlere neden olurken, inceleme kapsamına alınan hiçbir seride kökçük, hipokotil ve kotiledonlarda molibden elementine rastlanmadı. Çalışmamızda kökçük. hipokotil ve katiledon epidermal hücrelerinin bazı makro ve mikro besin elementleri içeriklerinin de alüminyum uygulamalarına bağlı olarak değişebildiği saptandı.

INVESGATION OF EFFECTS OF ALUMINIUM TO THE ABSORPTION LEVELS OF LYCOPERSICON ESCULENTUM MILL. SEEDLINGS FOR THE MACRO AND MICRO NUTRIENT ELEMENTS BY ANALYTIC AND MICRO ANALYTIC METHODS

In that study, effects of alumini um which was applied in differcnt concentrations to fıfteen days old Lycopersicon escu/entum Mill. cv. H-2274 (tomato) seedlings, grown in the environment of Murashige-Skoog basa! medium have been studicd by analytic and micro analytic methods. Aluminium was added to the solutions of nutrient by inercasing the coneentration quantities of aluminium in L.esculenlunı Mill. cv. H-2274 (tomato) seedlings was increased. The collection of alumini um in the roots was observed. The absorption of the nitrogen was not observed. Absorptions of phosphorus, calcium, magnesium and sodium linearly decreased according to the addition of the aluminium to seedlings. As a result of the addition of 100 ppm alumini um to the solutions of the nutrient, molybdenum was not observed in the roots. hypocotyls and the coytledons, as the total amount of absorption of seedlings for potassium, iron and cobalt decreases. In that study. contents of same macro and micro nutrient elemenis for the ep idermal cells of the root, the hypocotyl and the cotyledon were determined. In that study contents of same macro and micro nutrient elements for the epidermal cells of the root, the hypocotyl and the cotyledon were determined. That they varied according to the amount of added aluminium.

___

  • [1] Dagenhardt, J., Larsen, P.B., Howell, S.H., Kochian, L.V., Aluminum resistance in the Arabidopsis Mutant air-104 is caused by an aluminum induced increase in rhizosphere pH, Plant Physiology, 117, 19-27 (1998).
  • [2] Horst, W.J.J., The role of the apoplast in aluminium toxicity and resistance of higher plants, Zeitschrift fur Pflanzenerrahrung und Bodenkunde, 158: 5, 419-428 (1995).
  • [3] Blancaflor, E.B., Jones, D.L., Gilroy, S., Alterations in the cytoskeleton accompany aluminum induced growth inhibition and morphological changes in primary roots of maize, Plant Physiology, 117, 753-759 (1998).
  • [4] Larsen, P.B., Degenhardt, J., Tai, C.Y., Stenzler, L.M., Howell, S.H., Kochian, L.V., Aluminum resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots, Plant Physiology, 117, 9-17 (1998).
  • [5] Aller, A.J., Bernal, J.L. Nozal, M.J., Deban, L., Effects of selected trace elements on plant growth, J. Sci. Food Agric, 51, 447-479 (1990).
  • [6] Widell, S., Asp, H., Jensen, P., Activities of plasma membrane bound enzymes isolated from roots of spruce (Picea abies) grown in the presence of aluminium, Physiologia Plantarum, 92: 3, 456-466 (1994).
  • [7] Lindberg, S., Griffiths, G., Aluminium effects on ATPase activity and lipit composition of plasma membranes in sugar beet roots, Journal of Experimental Botany, 44, 1543-1550 (1993).
  • [8] Lindberg, S., Szynkier, K., Greger, M., Aluminium effects on transmembrane potential in cells of fibrous roots of sugar beet, Physiologia Plantarum, 83: 1, 54-62 (1991).
  • [9] Ownby, J.D., Hruschka, W.R., Quantitative changes in cytoplasmic and microsomal proteins associated with aluminium toxicity in two cultivars of winter wheat, Plant Cell and Environment, 14: 3, 303-309 (1991).
  • [10] Simon, L., Kieger, M., Sung, S.S., Smalley, T.J., Aluminium toxicity in tomato, part 2. Leaf gas exchange, chlorophyll content and invertase activity, Journal of Plant Nutrition, 17: 2-3, 307-317 (1994).
  • [11] Zhang, W., Zhang, F., Shen, Z., Liu, Y., Changes of H+ pumps of tonoplast vesicle from wheat roots in vivo and in vitro under aluminum treatment and effect of calcium, Journal of Plant Nutrition, 21: 12, 2515-2526 (1998).
  • [12] Plucinska, L.G., Effects of aluminium on free inorganic phosphate levels in scots pine roots, Arboretum Kornickie, 40, 135-141 (1995).
  • [13] Plucinska, L.G., Karolewski, P., Aluminium effects on pyridine nucleotide redox state in roots of Scots pine, Acta Societatis Botanicorum Poloniae, 63: 2, 167-171 (1994).
  • [14] Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R., Gardner, R.C., Aluminum induces oxidative stress genes in Arabidopsis thaliana, Plant Physiology, 116, 155-163 (1998).
  • [15] Blarney, F.P.C., Asher, C.J., Edwards, D.C., Kerven, G.L., In vitro evidence of aluminium effects on solution movement through root cell walls, Journal of Plant Nutrition, 16: 4, 555-562 (1993).
  • [16] Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiologia Plantarum, 15, 473-497 (1962).
  • [17] Koffa, S.N., Mori, T., Effects of pH and aluminium toxicity on the growth of four strains of Leucaena leucocephala (Lam.)de Wit., Leucaena Research Reports, 8, 58-62 (1987).
  • [18] Goransson, A., Eldhuset, T.D., Effects of aluminium on growth and nutrient uptake of small Picea abies and Pinus sylvestris plants, Trees: Structure and Function, 5: 3, 136-142(1991).
  • [19] Barcelo, J., Guevara, P., Poschenrieder, C, Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. mexicana), Plant and Soil, 154: 2, 249-255 (1993).
  • [20] Konishi, S., Ferguson, I.B., Putterill, J., Effect of acidic polypeptides on aluminium toxicity in tube growth of pollen from tea (Camellia sinensis L.), Plant Science, 56: 1, 55-59(1988).
  • [21] Yamamoto, Y., Chang, Y.C., Ono, K., Matsumoto, H., Effects of aluminium on the toxicity of iron, copper and cadmium in suspension cultured tobacco cells. Bulletin of the Research Institute for Bioresources, Okoyama University, 2: 2, 181-190 (1994).
  • [22] Fageria, N.K., Santos, A.B., Rice and common bean growth and nutrient concentrations as influenced by aluminum on an acid lowland soil, Journal of Plant Nutrition, 21: 5, 903-912 (1998).
  • [23] Yang, Y.H., Zhang, H.Y., Boron amelioration of aluminum toxicity in mungbean seedlings, Journal of Plant Nutrition, 21: 5, 1045-1054 (1998).
  • [24] Tang, V.H., Parijs, B., Dent, D.E., Effects of fluoride on aluminium toxicity in rice, Selected Papers of the Ho Chi Minh City Symposium on Acid Sulphate Soils, Ho Chi Minh City, Viet Nam, March 1992, 261-264 (1993).
  • [25] Simon, L., Smalley, T.J., Jones, J.B., Lasseigne, F.T., Aluminium toxicity in tomato. Part I. Growth and mineral nutrition, Journal of Plant Nutrition, 17: 2-3, 293-306 (1994).
  • [26] Baligar, V.C., Schaffert, R.E., Santos, H.L., Pitta, G.V.E., Bahia, A.F., Soil aluminium effects on uptake, influx and transport of nutrients in Sorghum genotypes, Plant and Soil, 150:2,271-277(1993).
  • [27] Jan, F., Aluminium effects on growth, nutrient net uptake and transport in 3 rice (Oryza sativa) cultivars with different sensitivity to aluminium, Physiologia Plantarum, 83: 3, 441-448 (1991).
  • [28] Strid, H., Effects of root zone temperature on aluminium toxicity in two cultivars of spring wheat with different resistance to aluminium, Physiologia Plantarum, 97:1, 5-12(1996).
  • [29] Rengel, Z., Robinson, D.L., Temperature and magnesium effects on aluminium toxicity in annual ryegrass (Lolium multiflorum), Plant Nutrition-Physiology and Applications, Proceedings of the Eleventh International Plant Nutrition Colloquium, Wageningen, Netherlands, 413-417 (1990).
  • [30] MacDiarmid C.W., Gardner, R.C., Al toxicity in yeast. A role for Mg, Plant Physiology, 112, 1101-1109 (1996).
  • [31] Lidon, F.C., Barreiro, M.G., Ramalho, J.C., Lauriano, J.A., Effects of Aluminium toxicity on nutrient accumulation in maize shoots: Implications on photosynthesis, Journal of Plant Nutrition, 22: 2, 397-416 (1999).
  • [32] Lidon, F.C., Barreiro, M.G., Threshold aluminum toxicity in maize, Journal of Plant Nutrition, 21: 3, 413-419, (1998).
  • [33] Ma, J.F., Hiradate, S., Matsumoto, H., High aluminum resistance in buckwheat II. Oxalic acid detoxifies aluminum internally, Plant Physiology, 117, 745-751 (1998).