La1-xCexMn2Si2 (x=0.35 ve 0.45) kritik davranışının manyetik entropi değişim bağlılığına göre araştırılması

La1-xCexMn2Si2 (x=0.35 ve 0.45) bileşiklerinin, kritik üstelleri ikinci derece bir faz geçişi olan, Curie sıcaklığı (TC) civarında incelenmiştir. Manyetik entropi değişiminin, manyetik alana bağımlılığı ortaya konulmuş ve kritik üstelleri bulmak için uygulanmıştır. Kritik üsteller, Modifiye Arrott çizimi ve kritik izoterm tekniği gibi çeşitli yöntemlerle tahmin edilmiştir. Elde edilen kritik üsteller, ölçekleme teorisi uygun oldukları belirlenmiştir. Sonuçlar, kritik değerin ve evrensel eğrinin; bu çalışmada antiferromanyetik faz olan, bileşikte oluşan ikinci manyetik fazın şiddetine bağlı olduğunu göstermiştir.

Investigation of critical behavior in La1-xCexMn2Si2 (x=0.35 and 0.45) by using the dependence of magnetic entropy change

The critical exponents of La1-xCexMn2Si2 (x=0.35 and 0.45) compounds are studied in the vicinity of Curie temperature (TC) which is a second order phase transition. The magnetic field dependence of the magnetic entropy change is brought out and implemented to deduce the critical exponents. The critical exponents are estimated by various techniques such as the Modified Arrott plot and critical isotherm technique. The obtained values of critical exponents for both compounds have been satisfied with the scaling theory. The results have showed that the critical values and universal curve depends on the strength of secondary magnetic phase existing in the compound, which is antiferromagnetic phase in our case. 

___

  • Tishin, A.M. and Spichkin, Y.I., The Magnetocaloric Effect and Its Applications. Institute of Physics Bristol and Philadelphia, (2003).
  • Planes, A., Mañosa, L. and Acet, M., Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys, Journal of Physics Condensed Matter, 21, 233201 (2009).
  • Gschneidner, Jr K.A., Pecharsky, V.K. and Tsokol, A.O., Recent developments in magnetocaloric materials, Reports on Progress in Physics, 68, 1479-1539 (2005).
  • Gschneidner, Jr.K.A., Takeya, H., Moorman, J.O., Pecharsky, V.K., Malik, S.K. and Zimm C.B., New magnetic refrigeration materials for the liquefaction of hydrogen, Advances in Cryogenic Engineering, 39, 1457 (1994).
  • Singh, N.K., Suresh, K.G., Nigam, A.K., Malik, S.K., Coelho A.A. and Gama S., Itinerant electron metamagnetism and magnetocaloric effect in RCo2-based Laves phase compounds, Journal of Magnetism and Magnetic Materials, 317, 68-79, (2007).
  • Singh, N.K., Banerjee, D., Tripathy, S.K., Tomy, C.V., Suresh, K.G. and Nigam, A.K., Effect of Si substitution on the magnetic and magnetocaloric properties of ErCo2. Journal of Applied Physics, 95, 6678, (2004).
  • Pecharsky, V.K., Gschneidner, Jr.K.A., Giant Magnetocaloric Effect in Gd5(Si2Ge2), Physical Review Letters, 78, 4494, (1997).
  • Gama, S., Coelho, A.A,. de Campos, A., Carvalho, A.M.G., Gandra, F.C., von Ranke P.J. and de Oliveira N.A Pressure-Induced Colossal Magnetocaloric Effect in MnAs, Physical Review Letters, 93, 237202, (2003).
  • Wada, H. and Tanabe, Y., Giant magnetocaloric effect of MnAs1−xSbx, Applied Physics Letters, 79, 3302 (2001).
  • Fujita, A., Fujieda, S., Hasegawa, Y. and Fukamichi, K., Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Physical Review B, 67, 104416 (2003).
  • Yan, A., Muller, K.H., Schultz, L. and Gutfleisch, O., Magnetic entropy change in melt-spun MnFePGe, Journal of Applied Physics, 99, 08K903, (2006)
  • Planes, A., Mañosa, Ll., Moya, X., Krenke, T., Acet, M. and Wassermann, E.F., Magnetocaloric effect in Heusler shape-memory alloys, Journal of Magnetism and Magnetic Materials, 310, 2767-2769, (2007).
  • Phan, M.H. and Yu, S.C., Review of the magnetocaloric effect in manganite materials, Journal of Magnetism and Magnetic Materials, 308, 325-340, (2007).
  • Emre, B., Yüce, S., Stern-Taulats, E., Planes, A., Fabbrici, S., Albertini, F., and Mañosa, Ll., Large reversible entropy change at the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys. Journal of Applied Physics, 113, 213905, (2013).
  • Stern-Taulats, E., Planes, A., Lloveras, P., Barrio, M., Tamarit, J.L., Pramanick, S., Majumdar, S., Yüce, S., Emre, B., Frontera, C. and Mañosa, Ll., Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys. Acta Materialia, 96, 324-332, (2015).
  • Emre, B., Aksoy, S., Posth, O., Acet, M., Duman, E., Lindner, J., and Elerman, Y., Antiferromagnetic-ferromagnetic crossover in La0.5Pr0.5Mn2Si2 and its consequences onmagnetoelastic and magnetocaloric properties, Physical Review B, 78, 144408, (2008).
  • Oumezzine, M., Pea, O., Kallel, S. and Oumezzine, M., Crossover of the magnetocaloric effect and its importance on the determination of the critical behaviour in the La0.67Ba0.33Mn0.9Cr0.1O3 perovskite manganite, Journal of Alloys Compounds, 539, 116-123, (2012).
  • Halder, M., Yusuf, S.M., Mukadam, M.D. and Shashikala, K., Magnetocaloric effect and critical behavior near the paramagnetic to ferrimagnetic phase transition temperature in TbCo2−xFex, Physical Review B, 81, 174402, (2010).
  • Emre, B., Dincer, I. and Elerman, Y., Magnetic and magnetocaloric results of magnetic field-induced transitions in La1-xCexMn2Si2 (x=0.35 and 0.45) compounds, Journal of Magnetism and Magnetic Materials, 322, 448-453, (2010).
  • Szytuła, A., and Leciejewicz, J., Magnetic Properties of Ternary Intermetallic Compounds of the RT2X2 Type vol 12, ed K A Gschneidner Jr and E LeRoy (Amsterdam: Elsevier) p 133 chapter 83 (1989).
  • Venturini, G., Welter, R., Ressouche, E., and Malaman, B., Neutron diffraction study of Nd0.35La0.65Mn2Si2: A SmMn2Ge2-like magnetic behaviour compound, Journal of Magnetism and Magnetic Materials, 150,197-212, (1995).
  • Md Din, M. F., Wang, J. L., Campbell, S. J., Zeng, R., Hutchison, W. D., Avdeev, M., Kennedy, S. J., and Dou, S. X., Magnetic properties and magnetocaloric effect of NdMn2−xTixSi2 compound. Journal of Physics D: Applied Physics, 46, 445002, (2013).
  • Duman, E., Acet, M., Dincer, I., Elmali, A. and Elerman, Y., Competing magnetic interactions in rare-earth manganese silicides and germanides, Journal of Magnetism and Magnetic Materials, 309, 40-53, (2007).
  • Tran, V.H., Bukowski, Z., Tran, L.M., and Zaleski, A.J., Magnetic Phase Transition in CePd2P2, Acta Physica Polonıca A , 126 17-21, (2014).
  • Lampen, P., Phan, M.H., Srikanth, H., Kovnir, K., Chai, P. and Shatruk, M., Heisenberg-like ferromagnetism in 3d−4f intermetallic La0.75Pr0.25Co2P2 with localized Co moments, Physical Review B, 90, 174404, (2014).
  • De-Xuan, H., Luo-Bing, L., Ling-Wei, L., Miao, L., and Zheng-Hong, Q., Magnetic transition and large reversible magnetocaloric effect in EuCu1.75P2 compound, Chinese Physics B, 22, 2, No. 2 027502 (2013).
  • Md Din, M.F., Wang, J.L., Cheng, Z.X., Dou, S.X., Kennedy, S.J., Avdeev, M., and Campbell, S.J., Tuneable Magnetic Phase Transitions in Layered CeMn2Ge2-xSix Compounds, Scientific Reports, 5, Article number: 11288, (2015).
  • Moutis, N., Panagiotopoulos, I., Pissas, M. and Niarchos, D., Structural and magnetic properties of La0.67(BaxCa1−x)0.33MnO3 perovskites (0<~x<~1), Physical Review B, 59, 1129–1133, (1999).
  • Phan, T.L., Thanh, P.Q., Sinh, N.H., Lee, K.W. and Yu, S.C., Critical behavior and magnetic entropy change in La0.7Ca0.3Mn0.9Zn0.1O3 perovskite manganite, Current Applied Physics, 11, 830–833, (2011).
  • Yang, J. and Lee, Y.P., Critical behavior in Ti-doped manganites LaMn1−xTixO3, Applied Physics Letters, 91, 142512 1–142512 3, (2007).
  • Zhu, X., Sun, Y., Luo, X., Lei, H., Wang, B., Song, W., Yang, Z., Dai, J., Shi, D. and Dou, S., Crossover of critical behavior in La0.7Ca0.3Mn1−xTixO3, Journal of Magnetism and Magnetic Materials, 322, 242–246, (2010).
  • Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, London, 1971. Banerjee, S., On a generalised approach to first and second order magnetic transitions, Applied Physics Letters, 12, 16, (1964).
  • Fan, J., Pi, L., Zhang, L., Tong, W., Ling, L., Hong, B., Shi, Y., Zhang, W., Lu, D. and Zhang, Y., Investigation of critical behavior in Pr0.55Sr0.45MnO3 by using the field dependence of magnetic entropy change, Applied Physics Letters, 98, 072508, (2011).
  • Zhang, X.X., Tejada, J., Xin, Y., Sun, G.F., Wong, K.W. and Bohigas, X., Magnetocaloric effect in La0.67Ca0.33MnOδ and La0.60Y0.07Ca0.33MnOδ bulk materials, Applied Physics Letters, 69, 3596, (1996).
  • Franco, V., Conde, A., Romero-Enrique, J.M. and Blazquez, J.S., A universal curve for the magnetocaloric effect: an analysis based on scaling relations, Journal of Physics Condensed Matter, 20, 285207, (2008).
  • Widom, B., Degree of the critical isotherm, The Journal of Chemical Physics, 41, 1633, (1964).
  • Li, L., Nishimura, K., Huo, D., Qian, Z. and Namiki, T., Critical behaviour of the RCo3B2 (R = Gd,Tb and Dy) compounds. Journal Alloys and Compounds, 572, 205-208, (2013).
  • Franco, V. and Conde, A., Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials, International Journal of Refrigeration, 33, 465-473, (2010).
  • Oesterreicher, H. and Parker, F.T., Magnetic cooling near Curie temperatures above 300 K, Journal of Applied Physics, 55, 4334, (1984).
  • Dong, Q.Y., Zhang, H.W., Sun, J.R., Shen, B.G. and Franco, V., A phenomenological fitting curve for the magnetocaloric effect of materials with a second-order phase transition, Journal of Applied Physics, 103, 116101, (2008).
  • Fan, J.Y., Ling, L.S., Hong, B., Zhang, L., Pi L. and Zhang, Y. H., Critical properties of the perovskite manganite La0.1Nd0.6Sr0.3MnO, Physical Review B, 81, 144426, (2010).
  • Franco, V., Conde, C.F., Blázquez, J.S. and Conde, A., A constant magnetocaloric response in FeMoCuB amorphous alloys with different Fe∕B ratios, Journal of Applied Physics, 101, 093903, (2007).
  • Emre, B., Dincer, I., Hoelzel, M., Senyshyn, A. and Elerman, Y., Investigation of the nature of the unusual magnetic behavior of La0.65Nd0.35Mn2Si2 compound by neutron diffraction study, Journal of Magnetism and Magnetic Materials, 324, 622-630, (2012).
  • Dincer, I., Elmali, A. and Elerman, Y., Ehrenberg, H., Fuess, H., and Isnard, O., Neutron diffraction study of the magnetic structures of PrMn2− xCoxGe2 (x= 0.4, 0.5 and 0.8) with a new refinement procedure. Journal of Physics: Condensed Matter, 16, 2081, (2004).
  • Venturini, G., Welter, R., Ressouche, E. and Malaman, B., Neutron diffraction studies of LaMn2Ge2 and LaMn2Si2 compounds: evidence of dominant antiferromagnetic components within the Mn plane, Journal of Alloys and Compounds, 210, 213-220, (1994).