Kara mayınlarının tespiti için askeri eğitim simülasyonu tasarımı: Bir araştırma ve ön çalışma

Mayınların çeşitli donanımsal yapılara sahip olması ve farklı tiplerdeki üretiminin sürekli artması nedeniyle hem mayının saha içerisinde tespiti hem de farklı özellikteki bu mayınların temin edilerek askeri eğitimin verilmesi zorlaşmıştır.  Bunun neticesinde, verilen mayın tarama eğitimleri teori düzeyinde kalmıştır.  Bu çalışmada mayın tarama eğitimini daha çok uygulamaya dönük bir hale getirebilmek için bir simülasyon geliştirilecektir.  Simülasyonda kullanıcının istediği mayın tipini, araziyi ve toprak koşulunu seçebileceği bir ortam yaratılacaktır.  Aynı zamanda simülasyondaki sanal asker ile dışarıdaki gerçek askerin eş zamanlı olarak koordineli bir biçimde çalışması sağlanacaktır.  Bunun için, gerçek askerin kullanacağı aygıt ile sanal askerin yönlendirmesi yapılacaktır.  Bu çalışma ile askerlerin birçok mayın tipini tanıyabildiği yeterli bir pratik eğitim almaları amaçlanmaktadır.  Bahsedilen simülasyon uygulamasını geliştirebilmek için, dünyada kullanılan mayın tarama cihaz ve yöntemleri hakkında bilgi verilmiştir.  Ayrıca, gerçekleştirilecek mayın tarama eğitim simülatörü yazılımının kapsamı anlatılarak, hedeflenen çıktılar ortaya konmuştur.

Military training simulation design for detection of landmines: A research and pre-study

Because of the having various hardware structures of mines and increased production of different types, both retaining them in their field and by providing various types of these mines it has become difficult to give military training as a result of this, given mine detecting trainings remained at much theory level. In this study in order to make this training more practically oriented a simulation will be developed.  In simulation an environment will be created in which the user can select the type of mine, land and soil conditions that he wanted.  At the same time, the simulated virtual soldier and the real soldier outside will work simultaneously in a coordinated manner.  For this, the virtual soldier will be guided by the device that will be used by the real soldier.  With this study it is aimed to obtain an adequate practical training that soldiers could recognize the many mine type.  In order to improve the mentioned simulation application, information about mine detection devices and methods used in the world is given.  In addition by describing the scope of the training simulator software, the targeted outputs have been revealed.

___

  • [1] Görüntülü mayın bulma sistemi, http://www.canlaser.com/tr/Mines.aspx, (05.01.2017).
  • [2] Demining, http://en.wikipedia.org/wiki/Demining#Military_mine_clearance, (05.01.2017).
  • [3] Clearance of mines and explosive remnants of war, http://www.mineaction.org/issues/clearance, (10.07.2017).
  • [4] Carpet bombing, http://en.wikipedia.org/wiki/Carpet_bombing,(31.01.2017).
  • [5] Bangalore torpedo, http://en.wikipedia.org/wiki/Bangalore_torpedo, (25.02.2017).
  • [6] Mine-clearing line charge, http://en.wikipedia.org/wiki/Mineclearing_line_charge, (16.01.2017).
  • [7] Introduction to mine clearing technology, http://www.dsta.gov.sg/docs/publications-documents/introduction-to-minelearingtechnology.pdf?sfvrsn=0, (16.08.2016).
  • [8] Current humanitarian demining methods, http://en.wikipedia.org/wiki/Demining#Current_humanitarian_demining_metho ds, (19.01.2017).
  • [9] Eladin, High Pressure Waterjet Laboratory, Rock Mechanics and Explosive Research Center, University of Missouri – Rolla, http://eladin.umr.edu/, (13.02.2007).
  • [10] Haight, B., Cleaning up an explosive problem: project Eladin uses water to detect, expose and neutralize abandoned land mines, Diesel Progress North American Edition, 12, (2002).
  • [11] Larionava, S., Automated landmine detection by means of a mobile robot, PhD Thesis, Faculty of Science and Technology University of Coimbra, Portekiz, (2007).
  • [12] Ishikawa, J., Kiyota, M. ve Furuta, K., Evaluation of test results of gpr-based antipersonnel landmine detection systems mounted on robotic vehicles, Proceedings of the IARP International Work-shop on Robotics and Mechanical Assistance in Humanitarian Demining, 39-44, (2005).
  • [13] Hirose, S., Yokota, S., Torii, A. ve Ogata, S., Quadruped walking robot centered demining system - development of TITAN-IX and its operation, IEEE International Conferance on Robotics and Automation (ICRA), 1296-1302, (2005).
  • [14] Acar, E. U., Zhang, Y. P., Choset, H., Schervish, M., Costa, A. G., Melamud, R., Lean, D. C. ve Graveline, A., Path planning for robotic demining and development of a test platform, International Conferance on Field and Service Robotics, 161-168, (2001).
  • [15] Gonzalez, E., Alarcon, M., Parra, C. ve Zheng, Y. F., BSA: a coverage algorithm, IEEE International Conferance on Intelligent Robots and Systems (IROS),2, 1679-1684,(2003).
  • [16] Acar, E. U., Choset, H., Zhang, Y. P.ve Schervish, M., Path planning for robotic demining: robust sensor-based coverage of unstructured environments and probabilistic methods, The International Jounal of Robotics Research, 441- 466, (2003).
  • [17] Zhang, Y. P., Schervish, M., Acar, E. U. ve Choset, H., Probabilistic methods for robotic landmine search, IEEE International Conferance on Intelligent Robots and Systems (IROS), 1525-1532, (2001).
  • [18] Rachkov, M. Y., Marques, L.ve de. Almeida, A. T., Multisensor demining robot, Autonomous Robots, 18, 3, 275-291, (2005).
  • [19] Neves, M. A., Gomes, R. R. ve Costa, R. M., Robô com pernas para desminagemhumanitária, Diploma Thesis, University of Coimbra, Portekiz, (2003).
  • [20] Gonzalez, E. ve Gerlein, E., BSA-CM: a multi-robot coverage algorithm, Proceeding WI-IAT '09 Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 2, 383-386, (2009).
  • [21] Clark, G. A., Sengupta, S. K., Aimonetti, D., Roeske, F.ve Donetti, J. G., Multispectral image feature selection for land mine detection, IEEE Transaction on Geoscience and Remote Sensing, 38, 1, 304-311, (2000).
  • [22] Kempen, L., Katartzis, A., Pizurica, V., Cornelis, J.ve Sahli, H., Digital signal/image processing for mine detection. part1: airborne approach, In Euro Conference on Sensor Systems and Signal Processing Techniques Applied to the Detection of Mines and Unexploded Ordance, 48-53, (1999).
  • [23] Caygill, J.S., Davis, F. ve Higson, S.P.J., Current trends in explosive detection techniques, Talanta, 88, 14-29, (2012).
  • [24] Cardona, L., Jıménez, J. ve Vanegas, N., Landmine detection technologies to face the demining problem in Antioquia, DYNA, 81, 183,115-125, (2014).
  • [25] Chen, X., Guo, D., Choa, F.S., Wang, C.C. ve Trivedi, S., Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone, Applied Optics, 52, 26-32, (2013).
  • [26] Piorek, B.D., Lee, S.J., Moskovits, M. ve Meinhart, C. D., Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives, Analytical Chemistry, 884, 9700-9705, (2012).
  • [27] Van Emon, J. M. ve Lopez-Avila, V., Immunochemical methods for environmental analysis, Analytical Chemistry, 64, 2, 78A-88A, (1992).
  • [28] Ma, J. ve Bock, W. J., Fiber-optic sensors for explosives detection, The Open Optics Journal, 7, 141-158, (2013).
  • [29] Bakaltcheva, I. B.,Ligler, F. S., Patterson, C. H. ve Shriver-Lake, L. C., Multianalyte explosive detection using a fiber optic biosensor, Analytica Chimica Acta, 399, 13-20, (1999).
  • [30] Stitzel, S.E., Aernecke, M.J. ve Walt, D.R., Artificial noses, Annual Review of Biomedical Engineering, 13, 1-25, (2011).
  • [31] Kong, D., Qi, Y., Zhou, L.,Lin, B. ve Li, Z., MEMS based sensors for explosive detection: development and discussion, Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 265-269, (2008).
  • [32] Jerry, J., Bees used in area reduction and mine detection, Journal of Mine Action, 7, 3, (2003).
  • [33] Reuters, Move over sniffer dogs, here come Africa's rats, http://www.aegis.com/news/re/2004/re040956.html, (02.01.2014).
  • [34] Amerikan İletişim Vakfı, Mine-sniffing plants, http://acfnewsource.org.s60463.gridserver.com/science/mine_sniffing_plants.ht ml, (02.01.2014).
  • [35] Burlage, R. S., Hunt, M., Dibenedetto, J. ve Maston. M., Bioreporter bacteria for the detection of unexploded ordnance excerpt from the demining, Demining Research, http://school.mech.uwa.edu.au/~jamest/demining/others/ornl/rsb.html, (03.01.2014).
  • [36] Rains, G.C., Tomberlin, J.K. ve Kulasiri, D., Using insect sniffing devices for detection, Trends in Biotechnology, 26, 288-294, (2008).
  • [37] Deyholos, M., Faust, A.A., Minmin, M., Montoya, R.ve Donahue, D.A., Feasibility of landmine detection using transgenic plants, Proceedings of SPIE, 6217, 62172B-1-62172B-12, (2006).
  • [38] Kasban, H.,Zahran, O., Elaraby, S.M. ve El-Kordy, M., A comparative study of landmine detection techniques, Sensing and Imaging: An International Journal, 11, 89-112, (2010).
  • [39] Mcfee, J.E., Faust, A.A., Andrews, H.R., Clifford, E.T.H. ve Mosquera, C.M., Performance of an improved thermal neutron activation detector for buried bulk explosives, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 712, 93-101, (2013).
  • [40] Sudac, D., Majetic, S., Kollar, R., Nad, K. ve Obhodas, J., Inspecting minefields and residual explosives by fast neutron activation method, IEEE Transactions on Nuclear Science, 59, 1421-1425, (2012).
  • [41] Bielecki, Z., Janucki, J., Kawalec, A., Mikolajczyk, J. ve Palka, N., Sensors and systems for the detection of explosive devices - an overview, Metrology and Measurement Systems, XIX, 3-28, (2012).
  • [42] Macdonald, J., Lockwood, J.R., Mcfee, J., Altshuler, T. ve Broach, T., Alternatives for landmine detection, CA: RAND, Technical report, Santa Monica, ABD, (2003).
  • [43] Mikhaltsevitch, V. T., Techniques used for 14N NQR studies, Annual Reports on NMR Spectroscopy, 66, 149-194, (2009).
  • [44] Heuvel, J. ve Fiore, F., Simulation study of x-ray backscatter imaging of pressure-plate improvised explosive devices, Detection and Sensing of Mines, Explosive Objects and Obscured Targets XVII, 835716-1-835716-15, (2012).
  • [45] King, C., Blagden, P., Rhodes, G., Maresca, L.ve Wheatley, A., Mine action : lessons and challenges, Technical report, Geneva International Centre for Humanitarian Demining, Geneva, İsviçre, (2005)
  • [46] Church, P., Mcfee, J.E., Gagnon, S. ve Wort, P., Electrical impedance tomographic imaging of buried landmines, IEEE Transactions on Geoscience and Remote Sensing, 44, 2407-2420, (2006).
  • [47] Chi, W., Ying-Jie, Y. ve Xing-Fei, L., An acoustic-to-seismic coupling based landmines detection system in lab-scale experimental environment, Journal of Tianjin University, 160-166, (2011).
  • [48] Bruschini, C. ve Gros, B., A Survey of research on sensor technology for landmine detection, Journal of Humanitarian Demining,2, 1, (1998).
  • [49] Coronado-Vergara, J., Avina-Cervantes, G., Devy, M. ve Parra, C., Towards landmine detection using artificial vision, IEEE International Conferance on Intelligent Robots and Systems,659-664, (2005).
  • [50] Messelink, W., Schutte, K., Vossepoel, A., Cremer, F., Schavemaker, J. ve Breejen, E., Feature-based detection of landmines in infrared images, Proceedings of SPIE, Detection and Remediation Technologies for Mines and Mine like Targets VII, 4742, 108-119, (2002).
  • [51] Cremer, F., Jong, W., Schutte, K., Yarovoy, A. G.ve Kovalenko, V., Feature level fusion of polarimetric infrared and gpr data for landmine detection, International Conferance on Requirements and Technologies for the Detection, Removal and Neutralization of Landmines and UXO, 638-642, (2003).
  • [52] Frigui, H., Gader, P. D., Keller, J. M.ve Schutte, K., Fuzzy clustering for land mine detection, Conference of the North American Fuzzy Information Processing Society - NAFIPS,261-265, (1998).
  • [53] Roughan, M., McMichael, D. W., Ho, K. C., Yarovoy, A. G. ve Kovalenko, V., A comparison of methods of data fusion for land-mine detection, International Workshop on Image Analysis and Information Fusion, (1997).
  • [54] Jarrad, G. A. ve McMichael, D. W., Improving multispectral mine detection methodsby compensating for clutter, Australian-American Joint Mine Warfare Conference, 1-4, (1999).
  • [55] Habib, M.K., Humanitarian demining mine detection and sensors, IEEE International Symposium on Industrial Electronics (ISIE),2237-2242, (2011).
  • [56] Kolba, M.P., Torrione, P.A. ve Collins, L.M., Fusion of ground-penetrating radar and electromagnetic induction sensors for landmine detection and discrimination, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, 76641S-1-76641S-7, (2010).
  • [57] Hibbs, A. D., Alternatives for Landmine Detection in Rand, Chapter Nuclear Quadrupole Resonance,169-189, Rand, Skokie, (1999).
  • [58] Wu, C., Digging in the dirt: chemical and biological sensors could aid the search for hidden land mines, Science News, 153, 13, 202-204, (1998).
  • [59] Achkar, R., Owayjan, M. ve Mrad, C., Landmine detection and classification using MLP, 2011 Third International Conference on Computational Intelligence, Modelling and Simulation, 1-6, (2011)
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-7985
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1999
  • Yayıncı: Balıkesir Üniversitesi