Gemi Elektrikle Tahrik Sistemleri İçin Sürekli Mıknatıslı Senkron Motorun Üstün Burulma Algoritması ile Kontrolü

Bu çalışmada sürekli gemilerde doğrudan tahrik makinesi olarak kullanılan sürekli mıknatıslı senkron motorun (SMSM) ikinci dereceden kayan kiple kontrolü ve klasik oran/integral kontrolüne ait uygulama ve benzeşimi yapılmıştır. Üstün burulma algoritması İkinci dereceden kayan kipli kontrol sistemlerine ait bir yöntemdir. Belirsizlikler içeren simtemlerde aynı zamanda dış ve iç bozucu etkilere maruz kalan sitemlerde karşı klasik kontrol yöntemi ve kayan kip yöntemine göre dayanıklılık ve çatırdama etkisini azaltma bakımından oldukça üstünlük sağlamaktadır. Ayrıca deneysel çalışması yapılan yöntem, makinenin kontrolüne ait herhangi bir parametre bilgisi içermemektedir. Deneysel ve benzeşim sonuçları kullanılan yöntemin diğer yöntemlere göre daha üstün olduğunu göstermektedir

Super-Twisting Control Of Permanent Magnet Synchronous Motor For Ship Electric Propulsion Systems

In this study, implementation and simulation of second order sliding mode and conventional proportion/integral control for permanent magnet synchronous motor is accomplished that is used as propulsion machine in ship applications. Super-twisting algorithm pertain second order sliding mode control structure and enables superiorities with regard to robustness against nonlinear and including uncertainties systems, at the same time disturbance and perturbance effects in comparison with conventional proportion/integral and sliding mode method. Additionally, the method, which is studied experimentally, does not contain any parameter information dependent the machine control. Experimental and simulations studies show that the method is superior than the other methods

___

  • [1]. Ji, Q., Liu, G, A., Starting Method of Ship Electric Propulsion Permanent Magnet Synchronous Motor, Advanced in Control Engineering and Information Science, 655-659, (2011).
  • [2]. Shang, G., Liu, Y., Sun, F., Zhang H, Study on DTC-SVM of PMSM Based on Propeller Load Characteristic, Proceeding of the 9/th World Congress on Intelligent Control and Automation, 6445-6449, China, (2008).
  • [3]. Xiuming, R., Zhihua W., Multi-stage PM disc motor for ship propulsion application, Electrical Machines and Systems, 2003. ICEMS 2003 Sixth International Conference 9-11 Nov. vol.1, 52-55, Beijing, China, (2003).
  • [4]. Yi, G., Hua-Yao, Z., Bu-Lai, W., Ai-Di S., Design of ship propulsion simulation system, Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 18-21 August, Vol. 2, 1059- 1063, Guangzhou, (2005).
  • [5]. De, L., Pinherio, M., Suemitsu, W, I., Permanent magnet synchronous motor drive in vessels with electric propulsion system, Power Electronics Conference (COBEP), 27-31 Oct, 808-813, Brazil, (2013).
  • [6]. Mecke, R., Permanent magnet synchronous motor for passenger ship propulsion, Power Electronics and Applications, EPE '09 13th European Conference,8-10 Sept. 1-10, (2009).
  • [7]. Ionel, D, M., Popescu, M., McGilp, M, I., Miller, T, J, E., Dellinger, S. J., Assessment of torque component in brushless permanent-magnet machines through numerical analysis of the electromagnetic field, IEEE Transactions on Industry Applications, Vol. 41, 1149-1158, (2005).
  • [8]. Nakai, T., Fujimoto, H., Harmonic current suppression method of PMSM based on repetitive perfect tracking control", IECON 2007: 33rd Annual Conference of the IEEE Industrial Electronics Society, Vol. 1-3., 1049-1054, (2007).
  • [9]. Suk-Hee, L., Geun-Ho, Lee., Kim Sung, Jung-Pyo, H., "A novel control method for reducing torque ripple in PMSM applied for Electric Power Steering", ICEMS, International Conference in Electrical Machines and Systems, 3142- 3145, (2008).
  • [10]. Thongam, J. S., Tarbouchi, M., Okou, A., Bouchard, F., Trends in Naval Ship Propulsion Drive Motor Technology, Electrical Power and Energy Conference (EPEC), 1-5, 21-23 Aug, (2013).
  • [11]. Xudong, W., Liu, N., Simulation of PMSM Field-Oriented Control Based on SVPWM, Vehicle Power and Propulsion conference (VPPC), 1465-1469, 7-10 Sept. (2009).
  • [12]. Yu, G., Zhang, Y., Research of DSP-Based SVPWM Vector Control System of Asynchronous Motor, Computer Science and Electronics Engineering (ICCSEE), International Conference, 151-155, 23-25 March, (2012).
  • [13]. Li, Z., Li, H., Modeling and Simulating of SVPWM Control System of Induction Motor in Electric Vehicle, Proceedings of the IEEE International Conference on Automation and Logistics, 2026-2030, 1-3 Sept. China, (2008).
  • [14]. Jin, H., Zhao Y., Wang, D., Simulation Study of AC Motor Speed Sensorless Vector Control System Based on SVPWM, 9th International Conference on Hybrid Intelligent Systems,523-528, 12-14 Aug, (2009).
  • [15]. Utkin, V, I., Sliding Modes in Control Optimization,. Springer-Verlag, Berlin, (1992).
  • [16]. Erbatur, K., Kaynak, M, O., Sabanovic, A., A Study on Robustness Property of Sliding -Mode Controllers: A Novel Design and Experimental Investigations, IEEE Transactions on Industrial Electronics, Vol 46, No. 5, October, (1999).
  • [17]. Gutman, P,O., Levin, H., Neumann, L., Sprecher, T., and Venezia, E., Robust and Adaptive Control of a Beam Deflector, IEEE Transactions on Automatic Control, Vol, 33, No, 7, July, (1988)
  • [18]. Astrom, K,J., Wittenmark, B., Adaptive Control, Addison-Wesley, (1994).
  • [19]. Salgado, I., Chairez, I., Bandyopadhyay, B., Fridman, L., Camacho, O., Discretetime non-linear state observer based on a super twisting-like algorithm, IET Control Theory and Applications, Vol. 8, Iss. 10, pp. 803-812, (2014).
  • [20]. Moreno, J. A, Osorio.M, A Lyapunov approach to second-order sliding mode controllers and observers, 47th IEEE Conference on Decision and Control, 2856-2861, December, Mexico, (2008).