Farklı çimlenme sürelerinde adzuki fasulyesi (Vigna angularis) filizlerinin antioksidan aktivite ve biyokimyasal parametreleri üzerine çözücü konsantrasyonlarının etkisi

Bu çalışmada, farklı çimlenme sürelerinde (0, 24, 48, 72, 96 ve 120 saat) elde edilen adzuki fasulyesi (Vigna angularis) filizlerinin, su ve çeşitli organik çözücülerde (aseton, n-heksan ve etanol) ve farklı konsantrasyonlarda (% 50, 70 ve 90) ekstrakte edilerek DPPH radikal süpürme gücü, metal-iyon şelatlama aktivitesi, gama aminobütirik asit ve fitik asit düzeyleri, toplam fenolik madde içeriği belirlenmiştir. Ekstraksiyon verimi %11.47 (H3) ila %28.55 (E1) arasında değişmiştir. En yüksek DPPH radikal süpürme kapasitesi, 120 saat boyunca E2 konsantrasyonunda (2.978 µmol/g DW) belirlendi (P<0.05). E3 (1.744 mg EDTA eşdeğeri/100 g) ve A3 (1.145 mg EDTA eşdeğeri/100 g), 48 saatlik çimlenmeden sonra en yüksek metal şelatlama aktivitesini gösterdi. Bu aktivite, çimlenme periyodunda 48 saatten 120 saate düştü (P<0.05). Farklı çözücü konsantrasyonları karşılaştırıldığında, 0, 24 ve 48 saatlik analizlerde gama aminobütirik asit ve fitik asit içeriklerinde önemli bir değişiklik (P>0.05) olmadı. En yüksek gama aminobütirik asit içeriği, 120. saatte A1 (67.29 mg/100 g DW) ve H1 (69.17 mg/100 g DW) konsantrasyonlarında tespit edildi (P<0.05). 48 saatte tüm solvent konsantrasyonlarında toplam fenol içeriğinde önemli bir değişiklik bulunmadı (P>0.05). 120 saat sonunda, toplam fenolik bileşenler su ekstraksiyonunda en düşük seviyelerde ve E2'de en yüksek konsantrasyonlarda belirlendi (P<0.05). Bu sonuçlar, çimlenme süresinin artmasıyla birlikte biyoaktif bileşenlerin aktivitelerindeki artışa, anti-besinsel faktörlerin azalmasına, su ve sulu organik çözücülerdeki konsantrasyona bağlı olarak adzuki fasulyesi tohumlarının belirlenen parametrelerde daha etkili olabileceğini göstermiştir.

Effect of solvent concentrations on antioxidant activity and biochemical parameters of adzuki bean (Vigna angularis) sprouts at different germination times

In this study were determined DPPH radical scavenging power, metal-ion chelating activity, gamma aminobutyric acid and phytic acid levels, total phenolic substance content, extraction yield in water and various organic solvents (acetone, n-hexane and ethanol), concentrations (50, 70 and 90%) and germination times (0, 24, 48, 72, 96 and 120 h) of adzuki bean (Vigna angularis) sprouts. The extraction yield ranged from 11.47% (H3) to 28.55% (E1). The highest DPPH radical scavenging capacity was determined at E2 concentration (2.978 µmol/g DW) for 120 h (P<0.05). E3 (1.744 mg EDTA equivalent/100 g) and A3 (1.145 mg EDTA equivalent/100 g) showed the highest metal chelating activity after 48h of germination. This activity decreased in the germination period from 48 h to 120 h (P<0.05). When different solvent concentrations were compared no significant change (P>0.05) in gamma aminobutyric acid and phytic acid contents at 0, 24 and 48 h analyses. The highest gamma aminobutyric acid content was detected to A1 (67.29 mg/100 g DW) and H1 (69.17 mg/100 g DW) concentrations at 120 h (P<0.05). No significant changes were found in total phenol content in all solvent concentrations in 48 h (P>0.05). At the end of 120 h, total phenolic components were determined in the lowest levels in W and the highest concentrations in E2 (P<0.05). These results showed that adzuki bean seeds may be more effective in these parameters, depending on the increase in the activities of bioactive components and the decrease in anti-nutritional factors, and the concentration in water and aqueous organic solvents with the increase of germination time.

___

  • Linnemann, A,R., Benner, M., Verkerk, R., van Boekel, M.A.J.S., Consumer-driven food product development, Trends in Food Science and Technology, 17, 184-190, (2006).
  • Vicentini, A., Liberatore, L., Mastrocola, D., Functional foods: Trends and development of the global market, Italian Journal of Food Science, 28(2), 338-351, (2016).
  • Huang, X., Cai, W., Xu, B., Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time, Food Chemistry, 143, 268-276, (2014).
  • Aguilera, Y., Diaz, M.F., Jimenez, T., Benitez, V., Herrera, T., Cuadrado, C., Martín-Pedrosa, M., Martin-Cabrejas, M.A., Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes, Journal of Agricultural and Food Chemistry, 61, 8120-8125, (2013).
  • Shahidi, F., Naczk, M., An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance, Journal of the American Oil Chemists' Society 69, 917-924, (1992).
  • Urbano, G., López-Jurado, M., Frejnagel, S.L., Gómez, Villalva, E., Porres, J.M., Frías, J., Vidal-Valverde, C., Aranda, P., Nutritional Assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques, Nutrition, 21, 230-239, (2005).
  • Renault, H., El Amrani, A., Palanivelu, R., Updegraff, E.P., Yu, A., Renou, J.P., Preuss, D., Bouchereau, A., Deleu C., GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana, Plant and Cell Physiology, 52, 894-908, (2011).
  • Nikmaram, N., Dar, B.N., Roohinejad, S., Koubaa, M., Barba, F.J., Greiner, R., Johnson, S.K., Recent advances in gamma-aminobutyric acid (GABA) properties in pulses: an overview, Journal of the Science of Food and Agriculture, 97, 2681-2689, (2017).
  • Kinnersley, A.M., Turano, F.J., Gamma aminobutyric acid (GABA) and plant responses to stress, Critical Reviews in Plant Sciences, 19, 479-509, (2010).
  • Gan, R.Y., Lui, W.Y., Wu, K., Chan, C.L., Dai, S.H., Sui, Z.Q., Corke, H., Bioactive compounds and bioactivities of germinated edible seeds and sprouts: an updated review, Trends in Food Science and Technology, 59, 1-14, (2017).
  • McGill, J.A., Michigan-Japan and adzuki beans, Mich. Dry Bean Digest, 19, 4-7, (1995).
  • Turkmen, N., Sari, F., Velioglu, Y.S., Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Foline-Ciocalteu methods, Food Chemistry, 99, 835-41, (2006).
  • Brand-Williams, W., Cuvelier, M.E., Berset, C., Use of a free radical method to evaluate antioxidant activity, LWT-Food Science and Technology, 28, 25-30, (1995).
  • Dinis, P., Pineda, M., Aguilar, M., Spectrophotometric quantity of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E, Analytical Biochemistry, 269, 337-341, (1999).
  • Haug, G., Lantzsch, W., Methods for determination of phytate of cereal products, Journal of The Science of Food and Agriculture, 34, 1423-1424, (1983).
  • Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M., Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods in Enzymology, 299, 152-178, (1999).
  • Lopez-Amoros, M.L., Hernandez, T., Estrella, I., Effect of germination on legume phenolic compounds and their antioxidant activity, Journal of Food Drug Analysis, 19, 277–283, (2006).
  • Wu, Z.Y., Song, L.X., Feng, S.B., Liu, Y.C., He, G.Y., Yioe, Y., Liu, S.Q., Huang, D., Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds, Journal of Agricultural and Food Chemistry, 60, 8606-8615, (2012).
  • Han, J.H., Moon, H.K., Chung, S.K., Kang, W.W., Comparison of antioxidant activities of radish bud (Raphanus sativus L.) according to extraction solvents and sprouting period, Journal of the Korean Society of Food Science and Nutrition, 42(11), 1767-1775, (2013).
  • Pajak, P., Socha, R., Galkowska, D., Roznowski, J., Fortuna, T., Phenolic profile and antioxidant activity in selected seeds and sprouts, Food Chemistry, 143, 300-306, (2014).
  • Siah, C.W., Trinder, D., Olynyk, J.K., Iron overload, Clinica Chimica Acta, 358, 24-36, (2005).
  • Halliwell, B., Gutteridge, J.M.C., Oxygen toxicology, oxygen radicals, transition metals and disease, Biochemical Journal, 219, 1-4, (1984).
  • Luo, Y., Xie, W., Jin, X., Wang, Q., He, Y., Effects of germination on iron, zinc, calcium, manganese, and copper availability from cereals and legumes, CyTA-Journal of Food, 12: 22-26, (2014).
  • Park, S., Grusak, M.A., Oh, M.M., Concentrations of minerals and phenolic compounds in three edible sprout species treated with iron-chelates during ımbibition, Horticulture, Environment,and Biotechnology, 55(6), 471-478, (2014).
  • Svihus, B., Newman, R.K., Newman, C.W., Effect of soaking, germination, and enzyme treatment of whole barley on nutritional value and digestive tract parameters of broiler chickens, British Poultry Science, 38, 390-396, (1997).
  • Ohmori, M., Yano, T., Okamoto, J., Tsushida, T., Murai, T., Higuchi, M., Effect of anaerobically treated tea (Gabaron tea) on blood pressure of spontaneously hypertensive rats, Nippon Nogei Kagaku Kaishi, 61, 1449-1451, (1987).
  • Oh, S.H., Stimulation of γ-aminobutyric acid synthesis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin, Journal of the Science of Food and Agriculture, 36, 319-325, (2003).
  • Kihara, M., Okada, Y., Iimure, T., Ito, K., Accumulation and degradation of two functional constituents, GABA and β-glucan, and their varietal differences in germinated barley grains, Breed Science, 57, 85-89, (2007).
  • Ding, J., Yang, T., Feng, H., Dong, M., Slavin, M., Xiong, S., Zhao, S., Enhancing contentsofγ-aminobutyric acid (GABA) and other micronutrients in dehulled rice duringgermination under normoxic and hypoxic conditions, Journal of Agricultural and Food Chemistry, 64, 1094-1102, (2016).
  • Yang, H., Gao, J., Yang, A., Chen, H., The ultrasound-treated soybean seeds improveedibility and nutritional quality of soybean sprouts, Food Research International, 77, 704-710, (2015).
  • Gani, A., Wani, S., Masoodi, F., Hameed, G., Whole-grain cereal bioactive compounds and their health benefits: a review, Journal of Food Processing and Technology, 3, 146-156, (2012).
  • Lin, Y.T., Pao, C.C., Wu, S.T., Chang, C.Y., Effect of different germination conditions on antioxidative properties and bioactive compounds of germinated brown rice, BioMed Research, 608-761, (2015).
  • Saikusa, T., Horino, T., Mori, Y., Accumulation of γ-aminobutyric acid (GABA) in the rice germ during water soaking, Bioscience, Biotechnology and Biochemistry, 58, 2291-2292, (1994).
  • Thavarajah, P., Thavarajah, D., Vandenberg, A., Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability, Journal of Agricultural and Food Chemistry, 57, 9044-9049, (2009).
  • Dorsch, J.A., Cook, A., Young, K.A., Anderson, J.M., Bauman, A.T., Volkmann C.J., Murthy, P.N., Raboy, V., Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes, Phytochemistry, 62, 691-706, (2003).
  • Khalil, A.W., Zeb, A., Mahmood, F., Tariq, S., Khattak, A.B., Shah, H., Comparision of sprout quahty characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.), LWT- Food Science and Teehnology, 40, 937-945, (2007).
  • Doblado, R., Frias, J., Vidal-Valverde, C., Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vigna sinensis var. carilla) seeds induced by high pressure treatment, Food Chemistry, 101, 918-923, (2007).
  • Ghavidel, R.A., Prakash, J., The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds, LWT- Food Science and Technology, 40, 1292-1299, (2007).
  • Khattak, A.B., Zeb, A., Bibi, N., Khalil, S.A., Khattak, M.S., Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts, Food Chemistry, 104, 1074-1079, (2007).
  • Rocha-Guzman, N.E., Herzog, A., Gonzalez-Laredo, R.F., Ibarra-Perez, F.J., Zambrano-Galvan, G., Gallegos-Infante, J.A., Antioxidant and antimutagenic activity of phenolic compounds in three different colour groups of common bean cultivars (Phaseolus vulgaris), Food Chemistry, 103, 521-527, (2007).
  • Gan, R.Y., Wang, M.F., Lui, W.Y., Wu, K., Corke, H., Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata) sprouts, International Journal of Food Science and Technology, 51, 2090-2098, (2016).
  • Tang, D., Dong, Y., Guo, N., Li, L., Ren, H., Metabolomic analysis of the polyphenols in germinating mung beans (Vigna radiata) seeds and sprouts, Journal of the Science of Food and Agriculture, 94, 1639-1647, (2014).
  • Fernandez-Orozco, R., Frias, J., Zielinski, H., Piskula, M.K., Kozlowska, H., Vidal-Valverde, C., Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald, Glycine max cv. jutro and Glycine max cv. Merit, Food Chemistry, 111, 622-630, (2008).
  • Aguilera, Y., Liebana, R., Herrera, T., Rebollo-Hernanz, M., Sanchez-Puelles, C., Benitez, V., Martín-Cabrejas, M.A., Effect of illumination on the content of melatonin, phenolic compounds, and antioxidant activity during germination of lentils (Lens culinaris L.) and kidney beans (Phaseolus vulgaris L.), Journal of Agricultural and Food Chemistry, 62, 10736-10743, (2014).
  • Rafińska, K., Pomastowski, P., Rudnicka, J., Krakowska, A., Maruśka, A., Narkute, M., Buszewski., B., Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts, Food Chemistry, 289, 16-25, (2019).
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-7985
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1999
  • Yayıncı: Balıkesir Üniversitesi