FARKLI ARBÜSKÜLER MİKORİZAL FUNGUS TÜRLERİNİN GUAVA (Psidium guajava L.) ÇÖĞÜRLERİNİN BÜYÜME VE GELİŞMESİ ÜZERİNE ETKİLERİ

Guava’da, (Psidium guajava L.) ticari bahçelerin kurulumunda aşıyla üretilmiş fidanlar tercih edilmektedir. Aşı ileçoğaltmada öncelikle aşı yapılacak çöğür ya da anaca ihtiyaç duyulmaktadır. Bu amaçla planlanan bu araştırmada, bazıarbüsküler mikorizal fungus (AMF) türlerinin, aşılamada kullanılacak guava çöğürlerinin büyüme ve gelişmesi üzerineetkilerinin belirlenmesi amaçlanmıştır. Çalışmada üç farklı AMF türü (Glomus mosseae, G. etinicatum, G. clarium)kullanılmıştır. Araştırma materyali olarak, pembe et rengine sahip guava genotipine ait çöğürler kullanılmıştır. Mikorizaaşılamaları, her bitkinin kök bölgesine 500 spor/bitki gelecek şekilde yapılmıştır. Aşılamadan 12 hafta sonra bitki gelişimparametreleri (bitki boyu, bitki çapı, kök uzunluğu, bitki ve kökün yaş-kuru ağırlıkları ve mikorizal kolonizasyon) ileilgili ölçümler gerçekleştirilmiştir. Araştırma bulguları; bitki boyunun 74.9-83.9 cm, bitki çapının 5.6-6.5 mm, kökuzunluğunun 41.4-50.7 cm, bitki yaş-kuru ağırlıklarının 19.1-43.9 g-7.9-17.2 g, kök yaş-kuru ağırlıklarının 9.6-27.8 g4.2-12.4 g ve kolonizasyon oranlarının %15-85 arasında değiştiğini göstermiştir. Araştırma sonucunda, guavada bitkibüyüme ve gelişmesi üzerine mikoriza türlerinin etkisi farklı olmuştur. İncelenen tüm parametreler açısından en yüksekdeğerler G. etinicatum türünde elde edilmiş ve bunu sırasıyla G. mosseae ve G. clarium türleri izlemiştir.

EFFECTS OF DIFFERENT ARBUSCULAR MYCORRHIZAL FUNGI SPECIES ON GROWTH AND DEVELOPMENT OF GUAVA (Psidium Guajava L.) SEEDLING

The grafted plants of guava are preferred for commercial planting. First, it is necessary to have seedlings and rootstock for propagation with grafting. The objective of the study is to evaluate the effects of some arbuscular mycorrhizal fungi (AMF) species on the growth and development of the guava seedlings to be used with grafting. Three different AMF species (Glomus mosseae, G. etinicatum, G. clarium) are used in this study. Pink flesh guava genotype was used as an experimental material. Mycorrhizal inoculations were applied using 500 spores per plant on the root zone of each plant. Plant measurement and parameter count (plant length, plant diameter, root length, plant and root fresh-dry weights and mycorrhizal colonization) were evaluated 12 weeks after inoculation. The results showed: plant length 74.9-83.9 cm, plant diameter 5.6-6.5 mm, root length 41.4-50.7 cm, plant fresh-dry weights 19.1-43.9 g-7.9-17.2 g, root fresh-dry weights 9.6-27.8 g-4.2-12.4 g and colonization rate varied between 15-85%. The highest value in terms of investigation criteria was obtained with G. etinicatum and followed by G. mosseae and G. clarium.

___

  • 1. Samson, J.A., 1986. Tropical fruits. Tropical agriculture series, longman scientific and technical. Harlow, UK, pp:235-255.
  • 2. Anonim, 2019. Top 10 largest guava producing countries in the world. The Daily Records, 2 January, (http://www.thedailyrecords.com/2018- 2019-2020-2021/world-famous-top-10-list/world /largest-guava-producing-countries-world-fruitsstates/6566/) (Erişim Tarihi: Mart 2020).
  • 3. Martínez-De-Lara, J., M.C. Barrientos-Lara, A.C. Reyes-De Anda, S.H. Delgado, J.S. PadillaRamírez and N.M. Pérez, 2004. Diversidad fenotípica y genética en huertas de guayabo de calvillo, aguascalientes. Revista Fitotecnia Mexicana, Chapingo. 27(3):243-249.
  • 4. Preece, J.E., 2003. A century of progress with vegetative plant propagation. Hortscience, Alexandria 38(5):1015-1025.
  • 5. Chandra, R., M. Kamle and A. Bajpai, 2010. Advances in horticulture biotechnology regeneration systems fruit crops, plantation crops and spices. Westville Publishing House, New Delhi, pp:103-121.
  • 6. Pereira, F.M., M. Usman, N.A. Mayer, J.C. Nachtigal, O.R.M. Maphanga and S. Willemse, 2017. Advances in guava propagation. Revista Brasileira De Fruticultura 39(4):228.
  • 7. Abbas, M.M., M.A. Javed, M. Ishfaq and M.A. Alvi, 2013. Grafting techniques in guava (Psidium guajava). J. Agric. Res. 51(4):465-471.
  • 8. Menge, J.A., W. Mjarrell, C.K. Labanauskas, J.C. Ojala, C. Huszar, E.L.V. Johnson and D. Sibert, 1982. Predicting mycorrhizal dependency of troyer citrange on glomus fasciculatus in California citrus soils and nursery mixes. Soil Sci. Soc. Am. J. 46:762-768.
  • 9. Ortaş, İ., 1994. The effect of different forms and rates of nitrogen and different rates of phosphorus fertilizer on rhizosphere phandp uptake in mycorrhizal and non-mycorrhizal sorghum plants (PhD. Thesis). University of Reading, UK, 270p.
  • 10.Brundrett, M., N. Bougher, B. Dell, T. Grove and N. Malajczuk, 1996. Working with mycorrhizas in forestry and agriculture. ACIAR Monograph, Australia, 374p.
  • 11.Azcón-Aguilar, C. and J. Barea, 1997. Applying mycorrhiza biotechnology to horticulture: significance and potentials. Scientia Horticulturae 68:1-24.
  • 12.Ortas, I., 2000. Mikorizanın çevre biliminde kullanımı ve önemi. GAP Çevre Kongresi, 16-18 Ekim 2000, Şanlıurfa, s:35-40.
  • 13.Davies, F.T., 2008. Opportunities from down under: how mycorrhizal fungi can benefit nursery propagation and production systems. Combined Proceedings International Plant Propagators Society, pp:539-548.
  • 14.Villeneuve, N., F. Le Tacon and D. Bouchard, 1991. Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizal fungi and effects on the growth of out planted Douglasfir seedlings. Plant and Soil 135:95-107
  • 15.Singh, N.V., S.K. Singh, A.K. Singh, D.T. Meshram and S.S. Suroshe, 2012. Arbuscular mycorrhizal fungi (AMF) induced hardening of micropropagated pomegranate (Punica granatum L.) plantlets. Scientia Horticulturae 136:122-127.
  • 16.Nunes, J.L.S., P.V.D. Souza, G.A.B. Marodin and J.C. Fachinello, 2009. Efficiency of arbuscular mycorrhizal fungi on growth of ‘Aldrighi’ peach tree rootstock. Bragantia 68(4):931-940.
  • 17.Vinayak, K. and D.J. Bagyaraj, 1990. Vesicular arbuscular mycorrhizae screened in troyer citrange. Biology and Fertility of Soils 9(4):311- 314.
  • 18.Slawomir, S. and S. Aleksander, 2010. The influence of mycorrhizal fungi on the growth and yield of plum and sour cherry trees. Journal of Fruit and Ornamental Plant Research 18(2):71- 77.
  • 19.Joolka, N.K., R.R. Singh and M.K. Sharma, 2004. Influence of biofertilizers, GA₃ and their combinations on the growth of pecan seedlings. Indian Journal of Horticulture 61(3):226-228.
  • 20.Linderman, R.G. and E.A. Davis, 2001. Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. American Journal of Enology and Viticulture 52(1):8-11.
  • 21.Ortakci, D., I. Ortas and S. Ercan, 1998. The effect of different mycorrhizae species on citrus growth and nutrient uptake. International Symposium on Arid Region Soil., pp:563-568.
  • 22.Mortin Fortin, J.A., C. Hamel, R.L. Granger and D.L. Smith, 1994. Apple rootstock response to VA-mycorrhizal fungi in a high P soil. Journal of American Society of Horticultural Science 119(3):578-583.
  • 23.Souza, P.V., D-de and de P.V.D. Souza, 2000. Effect of arbuscular mycorrhizae and gibberellic acid interactions on vegetative growth of Carrizo citrange seedlings. Cienicia Rural. 30(5):783-787.
  • 24.Estrada-Luna, A.A., F.T. Davies and J.N. Egilla, 2000. Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment. Mycorrhiza 10(1):1-8.
  • 25.Zarate, J.T., 1992. Effects of VA (vesicular arbuscular) mycorrhizal inoculation on 18 selected crops in a phosphorus deficient soil (PhD. Thesis). University of the Philippines at Los Baños, 185p.
  • 26.Schiavo, J.A. and M.A. Martins, 2002. Produção de mudas de goiabeira (Psidium guajava L.) inoculadas com o fungo micorrízico arbuscular Glomus clarum, em substrato agroindustrial. Rev. Bras. Frutic. 24:519-523.
  • 27.Silva, M.A.C., F.S.B. Silva, A.M. Yano-Melo, N.F. Melo, E.M.R. Pedrosa and L.C. Maia, 2013. Responses of guava plants to inoculation with arbuscular mycorrhizal fungi in soil infested with meloidogyne enterolobii. Plant Pathol. Journal 29(3):242-248.
  • 28.Koske, R.E. and J.N. Gamma, 1989. A modified procedure for staining roots to detect VAM. Mycological Research 92:486-505.
  • 29.Giovannetti, M. and B. Mosse, 1980. An evaluation of techniques for measuring vesiculararbuscular mycorrhiza in roots. New Phytologist 84:489-500.
  • 30.Chew, V., 1976. Uses and abuses of Duncan’s multiple range test. Proceedings of the Florida State Horticultural Society 89:251-253.
  • 31.Kumari, M., H. Prasad, S. Kumari and S., Samriti, 2017. Association of am (arbuscular mycorrhizal) fungi in fruit crops production: A review. The Pharma Innovation Journal 6(6):204-208.
  • 32.Khade, W.S. and B.F. Rodrigues, 2009. Studies on arbuscular mycorrhisation of papaya. African Crop Science Journal 17(3):155-165.
  • 33.Kamble, S.R., A.M. Navale and R.B. Sonawane, 2009. Response of mango seedlings to VAmycorrhizal inoculation. International Journal of Plant Protection 2(2):161-164.
  • 34.Andrade, S.A.L., P. Mazzafera, M.A. Sch Iav Inato and A.P.D. Silveira, 2009. Arbuscular mycorrhizal association in coffee. Journal of Agricultural Science 147:105-115.
  • 35.Watanarajanaporn, N., N. Boankerd, S. Wongkaew, P. Prommanap and N. Teaumroong, 2011. Selection of arbuscular mycorrhizal fungi for citrus growth promotion and phytophthora suppression. Sci. Hortic. 128:423-433.
  • 36.Mohandas, S., S. Poovarasan, P. Panneerselvam, B. Saritha, K.K. Upreti and R. Kamal, 2013. Guava (Psidium guajava L.) rhizosphere Glomus mosseaee spores harbor actinobacteria with growth promoting and antifungal attributes. Sci. Hortic. 150:371-376.
  • 37.Renaldelli, E. and S. Mancuso, 1996. Response of young mycorrhizal and nonmycorrhizal plants of olive tree to saline condition. Short term electrophysiological and long term vegetative salt effects. Agrochimica 44(34):151-159.
  • 38.Eswarappa, H., M. Sukhada, K.N. Gowda and S. Mohandas, 2002. Effect of VAM fungi on banana. Current Research 31(5-6):69-70.
  • 39.Lakshmipathy, R., A.N. Balakrishna, D.J. Bagyaraj and D.P. Kumar, 2002. Symbiotic response of cashew root stocks to different VA mycorrhizal fungi. Cashew 14(3):20-24.
  • 40.Vaast, P., R.J. Zasoski and C.S. Bledsoe, 1996. Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of in vitro propagated coffee (Coffea arabica L.) plants. Mycorrhiza 6:493-497.
  • 41.Azcón-Aguilar, C., I.G. Padilla, C.L. Encina, R. Azcón and J.M. Barea, 1996. Arbuscular mycorrhizal inoculation enhances plant growth and changes root system morphology in micropropagated Annona cherimola Mill. Agronomie: Plant Genetics and Breeding, pp:647- 652.
  • 42.Declerck, S., J.M. Risede and B. Delvaux, 2002. Greenhouse response of micropropagated bananas inoculated with in vitro monoxenically produced arbuscular mycorrhizal fungi. Sci. Hort. 93:301- 309.
  • 43.Gholamhoseini, M., A. Ghalavand, A. Dolatabadian, E. Jamshidi and A. KhodaeiJoghan, 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manag. 117:106-114.
  • 44.Abbaspour, H., H. Afshari and M.A. AbdelWahhab, 2012. Influence of salt stress on growth, pigments, soluble sugars and ion accumulation in three pistachio cultivars. Journal of Medicinal Plants Research 6(12):2468-2473.
  • 45.Wu, Q., A.K. Srivastava and Y. Zou, 2013. AMFinduced tolerance to drought stress in citrus: A review. Scientia Horticulturae 164:77-87.
  • 46.Zhang, Y., Q. Yaol, J. Li, Y. Wang, X. Liul, Y. Hu and J. Chen, 2015. Contributions of an arbuscular mycorrhizal fungus to growth and physiology of loquat (Eriobotrya japonica) plants subjected to drought stress. Mycol Progress, 14:84.
Bahçe-Cover
  • ISSN: 1300-8943
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1968
  • Yayıncı: Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü
Sayıdaki Diğer Makaleler

FARKLI ARBÜSKÜLER MİKORİZAL FUNGUS TÜRLERİNİN GUAVA (Psidium guajava L.) ÇÖĞÜRLERİNİN BÜYÜME VE GELİŞMESİ ÜZERİNE ETKİLERİ

Hamide GÜBBÜK, Gizem GÜLER, Murat ŞİMŞEK

Türkiye’de 2000-2019 Yıllarındaki Zeytinyağı Teknolojisi, Kalitesi ve Analizleri ile İlgili Lisansüstü Tezlerde Çalışılan Konuların Analizi

Yasin ÖZDEMİR, Seda KAYAHAN, Özge KESKİNEL

Gama Işını Uygulamalarının Kestanelerde Fiziko-Kimyasal ve Beslenme Parametrelerine Etkisi

Saadet KOÇ GÜLER

CABERNET-SAUVİGNON (Vitis vinifera L.) ÜZÜM ÇEŞİDİNDE BEN DÜŞME DÖNEMİ VE SONRASINDA UYGULANAN ANTİTRANSPİRANTLARIN ASMA SÜRGÜN GELİŞİMİ İLE YAPRAK ÖZELLİKLERİ ÜZERİNE ETKİLERİ

İlknur KORKUTAL, Elman BAHAR, Damla GÜVEMLİ DÜNDAR

Bazı ‘Bursa Siyahı’ İncir Klonlarının Yalova Koşullarındaki Performansları

Nesrin AKTEPE TANGU, Arzu ŞEN, Mehmet Ali KARGICAK, Cengiz TÜRKAY

Yaş Çay (Camelia sinensis L.) Verimi ve Kalite Özelliklerinin Güneşlenme Durumu ve Sürgün Dönemlerine Göre Değişimi

Nilgün DEMİR, Saim Zeki BOSTAN

Kısa Süreli Depolamada Üzüm Suyunun Stabilitesine Farklı Uygulamaların Etkilerinin Değerlendirilmesi

Emrah GÜLER

Cabernet-Sauvignon (Vitis vinifera L.) Üzüm Çeşidinde Ben Düşme Dönemi ve Sonrasında Uygulanan Antitranspirantların Asma Sürgün Gelişimi ile Yaprak Özellikleri Üzerine Etkileri

İlknur KORKUTAL, Elman BAHAR, Damla GÜVEMLİ DÜNDAR

AŞILI KAVUN FİDELERİNİN BAZI KALİTE PARAMETRELERİ ÜZERİNE FARKLI ANAÇLARIN ETKİSİ

Rohat GÜLTEKİN, Erdal GÖNÜLAL, Ali Fuat TARI, Aynur ÖZBAHÇE, Şeyma DEMİRCİ, Ceren GÖRGİŞEN, Yakup KÖSKER

KISA SÜRELİ DEPOLAMADA ÜZÜM SUYUNUN STABİLİTESİNE FARKLI UYGULAMALARIN ETKİLERİNİN DEĞERLENDİRİLMESİ

Emrah GÜLER