İnsan Eylemlerini Algılama, Önemi ve Nöral Temelleri

İnsanlar dahil olmak üzere tüm hayvanların sahip olduğu temel bir beceri, çevredeki diğer canlıların hareket ve eylemlerini algılama ve tanıma yeteneğidir. Günümüze kadar yapılan nörofizyolojik ve nörogörüntüleme çalışmaları, çevremizdeki diğer canlıların eylemlerini algılamak için önemli ve gerekli olan beyin bölgelerini büyük ölçüde tanımlamıştır. Ancak bu çalışmaların büyük bir çoğunluğu, eylemlerin algılanmasını seçici dikkat görevleri altında incelemiştir. Başka bir deyişle, bu çalışmalarda insan eylemlerini gösteren uyaranlar dikkatin odağı olmuş ve katılımcılar izledikleri hareket ve eylemlerle ilgili görevler yapmışlardır. Ancak günlük yaşamda, dikkatimizin odağı olmayan insan hareketleri de sosyal ya da hayati önemlerinden dolayı dikkatimizi çekebilirler ve seçici dikkat dışında otomatik olarak algılanabilirler. Bu derleme makalede, insan hareketlerinin dikkatin odağı olmadığı durumlarda beyin tarafından nasıl işlendiğini inceleyen çalışmalar ele alınmış ve alandaki yeni bilimsel sorulara ışık tutulmuştur. Bu sorular arasında, insan hareketlerinin dikkatin odağı olmadığında nasıl işleneceğinin zamansal boyutları, farklı insan hareketlerinin farklı dikkat çekme kapasitelerine sahip olup olmadıkları, ekolojik geçerlilikleri yüksek doğal düzeneklerde yapılan insan hareketi çalışmalarının laboratuvar ortamında yapılan çalışmalardan farklı sonuçlar doğurup doğurmadığı ve insan hareketlerini algılamada güçlük yaşayan klinik popülasyonlarda dikkat süreçleri de dikkate alındığında ne gibi tablolar çıkacağı soruları yer almaktadır.

Visual Perception of Human Actions and Attention

A fundamental skill possessed by all animals, including humans, is the ability to perceive and recognize the movements and actions of other living beings in their environment. Neurophysiological and neuroimaging studies conducted to date have largely identified the brain regions that are important and necessary for perceiving the actions of other beings in our surroundings. However, the majority of these studies have examined the perception of actions under selective attention tasks. In other words, the stimuli depicting human actions were the focus of attention, and participants performed tasks related to the movements and actions they observed. However, in daily life, human movements that are not the focus of our attention can still attract our attention due to their social or vital significance and can be automatically perceived outside of selective attention. This review article discusses studies that examine how the brain processes human movements in situations where they are not the focus of attention, shedding light on new scientific questions in the field. These questions include the temporal dimensions of how human actions will be processed when they are not the focus of attention, whether different human actions have different attention-capturing capacities, whether human action studies conducted in natural settings with high ecological validity yield different results from studies conducted in the laboratory environment, and how clinical populations who have impaired biological motion perception skills behave when attention processes are also taken into account.

___

  • Abdollahi, R. O., Jastorff, J. ve Orban, G. A. (2013). Common and segregated processing of observed actions in human SPL. Cerebral cortex, 23(11), 2734-2753. https://doi.org/10.1093/cercor/bhs264
  • Arnstein, D., Cui, F., Keysers, C., Maurits, N. M. ve Gazzola, V. (2011). μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. Journal of Neuroscience, 31(40), 14243-14249. https://doi.org/10.1523/JNEUROSCI.0963-11.2011
  • Blake, R. ve Shiffrar, M. (2007). Perception of human motion. Annu. Rev. Psychol., 58, 47-73. https://doi.org/10.1146/annurev.psych.57.102904.190152
  • Bruckmaier, M., Tachtsidis, I., Phan, P. ve Lavie, N. (2020). Attention and capacity limits in perception: A cellular metabolism account. Journal of Neuroscience, 40(35), 6801-6811. https://doi.org/10.1523/jneurosci.2368-19.2020
  • Caspers, S., Zilles, K., Laird, A. R. ve Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 1148-1167. https://doi.org/10.1016/j.neuroimage.2009.12.112
  • Corbo, D. ve Orban, G. A. (2017). Observing others speak or sing activates Spt and neighboring parietal cortex. Journal of Cognitive Neuroscience, 29(6), 1002-1021. https://doi.org/10.1162/jocn_a_01103
  • Çalışkan Nizamoğlu, H. (2022). Neural Underpinnings of Biological Motion Perception Under Attentional Load [Yayımlanmamış yüksek lisans tezi]. İhsan Doğramacı Bilkent Üniversitesi.
  • Desseilles, M., Balteau, E., Sterpenich, V., Dang-Vu, T. T., Darsaud, A., Vandewalle, G., Albouy, G., Salmon, E., Peters, F., Schmidt, C., Schabus, M., Gais, S., Degueldre, C., Phillips, C., Luxen, A., Ansseau, M., Maquet, P. ve Schwartz, S. (2009). Abnormal neural filtering of irrelevant visual information in depression. Journal of Neuroscience, 29(5), 1395-1403. https://doi.org/10.1523/jneurosci.3341-08.2009
  • Federici, A., Parma, V., Vicovaro, M., Radassao, L., Casartelli, L. ve Ronconi, L. (2020). Anomalous perception of biological motion in autism: a conceptual review and meta-analysis. Scientific Reports, 10(1), 4576. https://doi.org/10.1038/s41598-020-61252-3
  • Ferri, S., Rizzolatti, G. ve Orban, G. A. (2015). The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study. Human Brain Mapping, 36(10), 3845-3866. https://doi.org/10.1002/hbm.22882
  • Giese, M. A. ve Rizzolatti, G. (2015). Neural and computational mechanisms of action processing: interaction between visual and motor representations. Neuron, 88(1), 167-180. https://doi.org/10.1016/j.neuron.2015.09.040
  • Goldstein, E. B. ve Brockmole, J. R. (2016). Sensation and perception (10th ed.). Cengage Learning.
  • Grossman, E. D. ve Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35(6), 1167-1175. https://doi.org/10.1016/s0896-6273(02)00897-8
  • Hirai, M., Fukushima, H. ve Hiraki, K. (2003). An event-related potentials study of biological motion perception in humans. Neuroscience Letters, 344(1), 41-44. https://doi.org/10.1016/s0304-3940(03)00413-0
  • Jastorff, J., Begliomini, C., Fabbri-Destro, M., Rizzolatti, G. ve Orban, G. A. (2010). Coding observed motor acts: different organizational principles in the parietal and premotor cortex of humans. Journal of Neurophysiology, 104(1), 128-140. https://doi.org/10.1152/jn.00254.2010
  • Jastorff, J., Abdollahi, R. O., Fasano, F. ve Orban, G. A. (2016). Seeing biological actions in 3 D: An f MRI study. Human Brain Mapping, 37(1), 203-219. https://doi.org/10.1002/hbm.23020
  • Jensen, O. ve Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186. https://doi.org/10.3389/fnhum.2010.00186
  • Jensen, O., Bonnefond, M. ve VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200-206. https://doi.org/10.1016/j.tics.2012.03.002
  • Kaletsch, M., Pilgramm, S., Bischoff, M., Kindermann, S., Sauerbier, I., Stark, R., Lis, S., Gallhofer, B., Sammer, G., Zentgraf, K., Munzert, J. ve Lorey, B. (2014). Major depressive disorder alters perception of emotional body movements. Frontiers in Psychiatry, 5, 4. https://doi.org/10.3389/fpsyt.2014.00004
  • Krakowski, A. I., Ross, L. A., Snyder, A. C., Sehatpour, P., Kelly, S. P. ve Foxe, J. J. (2011). The neurophysiology of human biological motion processing: a high-density electrical mapping study. NeuroImage, 56(1), 373-383. https://doi.org/10.1016/j.neuroimage.2011.01.058
  • Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451. https://doi.org/10.1037/0096-1523.21.3.451
  • Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 75-82. https://doi.org/10.1016/j.tics.2004.12.004
  • Lingnau, A. ve Downing, P. E. (2015). The lateral occipitotemporal cortex in action. Trends in Cognitive Sciences, 19(5), 268-277. https://doi.org/10.1016/j.tics.2015.03.006
  • Loi, F., Vaidya, J. G. ve Paradiso, S. (2013). Recognition of emotion from body language among patients with unipolar depression. Psychiatry Research 209, 40–49. https://doi.org/10.1016/j.psychres.2013.03.001
  • Nelissen, K., Borra, E., Gerbella, M., Rozzi, S., Luppino, G., Vanduffel, W., Rizzolatti, G. ve Orban, G. A. (2011). Action observation circuits in the macaque monkey cortex. Journal of Neuroscience, 31(10), 3743-3756. https://doi.org/10.1523/jneurosci.4803-10.2011
  • Nizamoğlu, H. ve Ürgen, B. A. (2023). Neural processing of bottom up perception of biological motion under attentional load. bioRxiv, 2023-03. https://doi.org/10.1101/2023.03.14.532555
  • Oberman, L. M., Pineda, J. A. ve Ramachandran, V. S. (2007). The human mirror neuron system: A link between action observation and social skills. Social Cognitive and Affective Neuroscience, 2(1), 62-66. https://doi.org/10.1093/scan/nsl022
  • Okruszek, Ł. ve Pilecka, I. (2017). Biological motion processing in schizophrenia–Systematic review and meta-analysis. Schizophrenia Research, 190, 3-10. https://doi.org/10.1016/j.schres.2017.03.013
  • Oosterhof, N. N., Tipper, S. P. ve Downing, P. E. (2013). Crossmodal and action-specific: Neuroimaging the human mirror neuron system. Trends in Cognitive Sciences, 17(7), 311-318. https://doi.org/10.1016/j.tics.2013.04.012
  • Orban, G. A., Lanzilotto, M. ve Bonini, L. (2021). From observed action identity to social affordances. Trends in Cognitive Sciences, 25(6), 493-505. https://doi.org/10.1016/j.tics.2021.02.012
  • Peelen, M. V. ve Downing, P. E. (2007). The neural basis of visual body perception. Nature Reviews Neuroscience, 8(8), 636-648. https://doi.org/10.1038/nrn2195
  • Phillipou, A., Rossell, S. L., Gurvich, C., Castle, D. J., Troje, N. F. ve Abel, L. A. (2016). Body image in anorexia nervosa: Body size estimation utilising a biological motion task and eyetracking. European Eating Disorders Review, 24(2), 131-138. https://doi.org/10.1002/erv.2423
  • Press, C., Cook, J., Blakemore, S. J. ve Kilner, J. (2011). Dynamic modulation of human motor activity when observing actions. Journal of Neuroscience, 31(8), 2792-2800. https://doi.org/10.1523/jneurosci.1595-10.2011
  • Rauss, K. S., Pourtois, G., Vuilleumier, P. ve Schwartz, S. (2009). Attentional load modifies early activity in human primary visual cortex. Human Brain Mapping, 30(5), 1723-1733. https://doi.org/10.1002/hbm.20636
  • Rauss, K., Pourtois, G., Vuilleumier, P. ve Schwartz, S. (2012). Effects of attentional load on early visual processing depend on stimulus timing. Human Brain Mapping, 33(1), 63-74. https://doi.org/10.1002/hbm.21193
  • Rees, G., Frith, C. D. ve Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science, 278(5343), 1616-1619. https://doi.org/10.1126/science.278.5343.1616
  • Saygın, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130(9), 2452-2461. https://doi.org/10.1093/brain/awm162
  • Saygın, A. P. ve Sereno, M. I. (2008). Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex. Cerebral Cortex, 18(9), 2158-2168. https://doi.org/10.1093/cercor/bhm242
  • Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J. ve Driver, J. (2005). Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task irrelevant stimulation in the peripheral visual field. Cerebral Cortex, 15(6), 770-786. https://doi.org/10.1093/cercor/bhh178
  • Sitnikova, T., Kuperberg, G. ve Holcomb, P. J. (2003). Semantic integration in videos of real–world events: An electrophysiological investigation. Psychophysiology, 40(1), 160-164. https://doi.org/10.1111/1469-8986.00016
  • Sitnikova, T., Holcomb, P. J., Kiyonaga, K. A. ve Kuperberg, G. R. (2008). Two neurocognitive mechanisms of semantic integration during the comprehension of visual real-world events. Journal of Cognitive Neuroscience, 20(11), 2037-2057. https://doi.org/10.1162/jocn.2008.20143
  • Tarhan, L. ve Konkle, T. (2020). Sociality and interaction envelope organize visual action representations. Nature Communications, 11(1), 3002. https://doi.org/10.1038/s41467-020-16846-w
  • Thornton, I. M. ve Vuong, Q. C. (2004). Incidental processing of biological motion. Current Biology, 14(12), 1084-1089. https://doi.org/10.1016/j.cub.2004.06.025
  • Tucciarelli, R., Wurm, M., Baccolo, E. ve Lingnau, A. (2019). The representational space of observed actions. Elife, 8, e47686. https://doi.org/10.7554/elife.47686
  • Ürgen, B. A., Plank, M., Ishiguro, H., Poizner, H. ve Saygın, A. P. (2013). EEG theta and Mu oscillations during perception of human and robot actions. Frontiers in neurorobotics, 7, 19. https://doi.org/10.3389/fnbot.2013.00019
  • Ürgen, B. A., Kutas, M. ve Saygın, A. P. (2018). Uncanny valley as a window into predictive processing in the social brain. Neuropsychologia, 114, 181-185. https://doi.org/10.1016/j.neuropsychologia.2018.04.027
  • Ürgen, B. A., Pehlivan, S. ve Saygın, A. P. (2019). Distinct representations in occipito-temporal, parietal, and premotor cortex during action perception revealed by fMRI and computational modeling. Neuropsychologia, 127, 35-47. https://doi.org/10.1016/j.neuropsychologia.2019.02.006
  • Ürgen, B. A. ve Saygın, A. P. (2020). Predictive processing account of action perception: Evidence from effective connectivity in the action observation network. Cortex, 128, 132-142. https://doi.org/10.1016/j.cortex.2020.03.014
  • Ürgen, B. A. ve Orban, G. A. (2021). The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions. NeuroImage, 237, 118220. https://doi.org/10.1016/j.neuroimage.2021.118220
  • Van de Cruys, S., Schouten, B. ve Wagemans, J. (2013). An anxiety-induced bias in the perception of a bistable point-light walker. Acta Psychologica, 144(3), 548-553. https://doi.org/10.1016/j.actpsy.2013.09.010
  • Vanrie, J., Dekeyser, M. ve Verfaillie, K. (2004). Bistability and biasing effects in the perception of ambiguous point-light walkers. Perception, 33(5), 547-560. https://doi.org/10.1068/p5004
  • Vaskinn, A., Lagerberg, T. V., Bjella, T. D., Simonsen, C., Andreassen, O. A., Ueland, T. ve Sundet, K. (2017). Impairment in emotion perception from body movements in individuals with bipolar I and bipolar II disorder is associated with functional capacity. International Journal of Bipolar Disorders, 5, 1-9. https://doi.org/10.1186/s40345-017-0083-7
  • Vocks, S., Legenbauer, T., Rüddel, H. ve Troje, N. F. (2007). Static and dynamic body image in bulimia nervosa: mental representation of body dimensions and biological motion patterns. International Journal of Eating Disorders, 40(1), 59-66. https://doi.org/10.1002/eat.20336
  • Vogeley, K. (2017). Two social brains: neural mechanisms of intersubjectivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1727), 20160245. https://doi.org/10.1098/rstb.2016.0245
  • Zucker, N., Moskovich, A., Bulik, C. M., Merwin, R., Gaddis, K., Losh, M., Piven, J., Wagner, H. R. ve LaBar, K. S. (2013). Perception of affect in biological motion cues in anorexia nervosa. International Journal of Eating Disorders, 46(1), 12-22. https://doi.org/10.1002/eat.22062
AYNA Klinik Psikoloji Dergisi-Cover
  • ISSN: 2148-4376
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2014
  • Yayıncı: ODTÜ Psikoloji Bölümü