ER,CR:YSGG LASER AS A SURFACE DETOXIFICATION METHOD IN ENHANCEMENT OF OSSEOINTEGRATION

Amaç: Bu çalışmanın amacı; enfekte implant yüzeyini en uygun şekilde detoksifiye edecek ve aynı zamanda yüzey biyouyumluluğunu koruyarak, iyileşme sürecinde osteoblastların yeniden osseointegrasyonunu kolaylaştıracak Er,Cr:YSGG lazer uygulama protokollerini ortaya koymaktır. Bu amaçla lazer ile ilgili dört farklı değişken (güç-W, frekansHz, mesafe-mm ve süre-sn.) üç farklı düzeyde incelendi. Materyal ve Metot: S.aureus ile enfecte edilen Grade 5 titanium diskler Erbium Chromium-doped YttriumScandium-Gallium-Garnet (Er,Cr:YSGG) lazer ile farklı protokollerde detoksifiye edildi. Lazer uygulamasından sonra, titanyum disklerin yüzey morfolojileri, yüzey pürüzlülükleri, 24 saat ve 48 saat sonundaki osteoblast hücre proliferasyonları (SaOs-2 hücre kültürü) ve osteoblast hücre morfolojileri incelendi. Bulgular: Çalışma sonucunda; titanyum disk yüzeyinde en fazla morfolojik değişikliğe neden olan protokolün güç yoğunluğunun (W/cm2) en fazla olduğu test 8 grubu (3 W- 25 Hz-2 mm-45 sn) olduğu görüldü. Bu protokolde yüzeydeki ergime ve düzleşmenin en fazla, yüzey pürüzlülük değerinin (Ra) ise en düşük olduğu belirlendi. Hücresel proliferasyon değerleri incelendiğinde, 48 saat sonundaki proliferasyon değerlerine göre test 1 ve test 7 gruplarındaki proliferasyon değerlerinin kontrol grubuna göre istatistiksel olarak anlamlı derecede arttığı gösterildi. Ayrıca, bu iki test grubunun (test 1 ve test 7) Ra değerleri incelendiğinde, kontrol grubuna oldukça benzer Ra değerlerine sahip oldukları belirlendi. Sonuç: Sonuçta, yüzey morfolojisinin değişiminde en etkili parametrenin güç yoğunluğu olduğu bununda doğrudan uygulama mesafesi ile ilgili olduğu görüldü. Ayrıca yüzey pürüzlülüğünü neredeyse değiştirmeden, ilk haline yakın olacak şekilde koruyarak, yüzey biyouyumluluğunu arttıran uygulama koşullarının reosseointegrayon sürecinde hücresel proliferasyona olumlu katkı sağladığı görüldü

ER,CR:YSGG LASER AS A SURFACE DETOXIFICATION METHOD IN ENHANCEMENT OF OSSEOINTEGRATION

Purpose: The aim of the current study was to establish protocols for Erbium Chromium-doped Yttrium-ScandiumGallium-Garnet (Er,Cr:YSGG) laser application for detoxification of implant surface, preservation of surface biocompatibility and enhancement of osseointegration. In this purpose, four different variables including power (W), frequency (Hz), distance (mm) and duration (sn) were investigated at 3 different levels. Material and Methods: Grade 5 titanium discs infected by S.aureus were detoxified with Er, Cr: YSGG laser according to various protocols. After laser application, surface morphology and surface roughness of titanium discs as well as cellular morphology and proliferation of osteoblasts-like cells at the end of 24 and 48 hours (SaOs-2 cell culture) were examined. Results: The most remarkable changes on the surface of titanium discs were observed in group Test 8 (3 W-25 Hz-2 mm-45 sn) which was exposed to the highest power density (W/cm2).. In this protocol, melting and flattening on the surface was observed most prominently and surface roughness (Ra) was lowest. Proliferation indicators in groups Test 1 and Test 7 were found to be statistically significantly increased compared to the control group at the end of 48 hours. Furthermore, Ra values of these 2 groups (Test 1 and Test 7) were similar to that of control group. Discussion: To conclude, our results have shown that power intensity, which is linked with distance, was the leading parameter for alteration of surface morphology. We suggest that cellular proliferation during reosseointegration is facilitated by conditions that maintain surface roughness in its initial form and amplify surface biocompatibility.

___

  • [1] Mombelli A, Decaillet F. The characteristics of biofilms in peri-implant disease. J Clin Periodontol. 2011;38 Suppl 11:203-13.
  • [2] Salvi GE, Furst MM, Lang NP, Persson GR. One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res. 2008;19:242-8.
  • [3] Okayasu K, Wang HL. Decision tree for the management of periimplant diseases. Implant Dent. 2011;20:256-61.
  • [4] Persson LG, Mouhyi J, Berglundh T, Sennerby L, Lindhe J. Carbon dioxide laser and hydrogen peroxide conditioning in the treatment of periimplantitis: an experimental study in the dog. Clin Implant Dent Relat Res. 2004;6:230-8.
  • [5] Renvert S, Lindahl C, Roos Jansaker AM, Persson GR. Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol. 2011;38:65-73.
  • [6] Romanos GE, Gupta B, Yunker M, Romanos EB, Malmstrom H. Lasers use in dental implantology. Implant Dent. 2013;22:282-8.
  • [7] Javed F, Hussain HA, Romanos GE. Re-stability of dental implants following treatment of peri-implantitis. Interv Med Appl Sci. 2013;5:116-21.
  • [8] Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J. Effects of an Er:YAG laser and the Vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res. 2003;14:784-92.
  • [9] Aoki A, Sasaki KM, Watanabe H, Ishikawa I. Lasers in nonsurgical periodontal therapy. Periodontol 2000. 2004;36:59-97.
  • [10] Asghar A, Abdul Raman AA, Daud WM. A comparison of central composite design and Taguchi method for optimizing Fenton process. Scientific Worl Journal. 2014;2014:869120.
  • [11] Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, et al. Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig. 2005;9:111-7.
  • [12] Miller RJ. Treatment of the contaminated implant surface using the Er,Cr:YSGG laser. Implant Dent. 2004;13:165-70.
  • [13] Azzeh MM. Er,Cr:YSGG laserassisted surgical treatment of peri-implantitis with 1-year reentry and 18-month follow-up. J Periodontol. 2008;79:2000-5.
  • [14] Huang HH, Chuang YC, Chen ZH, Lee TL, Chen CC. Improving the initial biocompatibility of a titanium surface using an Er,Cr:YSGG laser-powered hydrokinetic system. Dent Mater. 2007;23:410-4.
  • [15] Natto ZS, Aladmawy M, Levi PA, Jr., Wang HL. Comparison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review. Int J Oral Maxillofac Implants. 2015;30:338-45.
  • [16] Romanos G, Crespi R, Barone A, Covani U. Osteoblast attachment on titanium disks after laser irradiation. Int J Oral Maxillofac Implants. 2006;21:232-6.
  • [17] Park JH, Heo SJ, Koak JY, Kim SK, Han CH, Lee JH. Effects of laser irradiation on machined and anodized titanium disks. Int J Oral Maxillofac Implants. 2012;27:265-72.
  • [18] Schwarz F, Nuesry E, Bieling K, Herten M, Becker J. Influence of an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser on the reestablishment of the biocompatibility of contaminated titanium implant surfaces. J Periodontol. 2006;77:1820-7.
  • [19] Ercan E, Arin T, Kara L, Candirli C, Uysal C. Effects of Er,Cr:YSGG laser irradiation on the surface characteristics of titanium discs: an in vitro study. Lasers Med Sci. 2014;29:875-80.
  • [20] Ercan E, Candirli C, Arin T, Kara L, Uysal C. The effect of Er,Cr:YSGG laser irradiation on titanium discs with microtextured surface morphology. Lasers Med Sci. 2015;30:11-5.
  • [21] Kreisler M, Kohnen W, Marinello C, Gotz H, Duschner H, Jansen B, et al. Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol. 2002;73:1292-8.
  • [22] Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20 Suppl 4:172-84.
  • [23] Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: a systematic review. J Dent Res. 2006;85:496-500.
  • [24] Shibli JA, Grassi S, de Figueiredo LC, Feres M, Marcantonio E, Jr., Iezzi G, et al. Influence of implant surface topography on early osseointegration: a histological study in human jaws. J Biomed Mater Res B Appl Biomater. 2007;80:377-85.
  • [25] Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials. 2003;24:3893-907.
  • [26] Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci. 2015;30:561-6.
Aydın Dental Journal-Cover
  • ISSN: 2149-5572
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2015
  • Yayıncı: İstanbul Aydın Üniversitesi