Yenilenebilir Enerji Üretiminde Mikrobiyal Biyoproseslerin Kullanımı

Artan nüfus ve sanayileşme ile birlikte enerji taleplerindeki hızlı artış tüm dünya ülkelerinde endişe oluşturmaktadır. Mevcut senaryoda konvensiyonel enerji kaynaklarının sınırlı mevcudiyeti ve yenilenemeyen fosil yakıtların hızla tükenmesi nedeniyle dünya oldukça büyük bir enerji krizine tanıklık etmektedir. Bu bağlamda artan nüfus, küresel ısınma ve sera gazı emisyonları gibi tehlikeli çevresel sorunların üstesinden gelinmesi için dünyanın enerji gereksinimlerini karşılayabilecek alternatif yenilenebilir yakıtların araştırılmasına ihtiyaç duyulmaktadır. Son zamanlarda bakteriler ve algler gibi mikroorganizmaların kullanımı ile organik bileşiklerde saklı kimyasal enerjinin elektrik enerjisine dönüştürülmesi gibi konulara yönelik çalışmalara ilgi artmaktadır. Günümüzde mikrobiyal metabolik faaliyetlerle (özellikle çok çeşitli biyokütle ve biyolojik substratların kullanımı) yenilenebilir enerji üretimi enerji kıtlığı sorununa pratik bir çözüm olarak kabul edilmektedir. Mikrobiyal yakıt hücreleri organik bileşiklerde toplanmış enerjiyi oksitlemek suretiyle katalizleyerek biyoelektriğe dönüştürebilmektedir. Ayrıca mikroorganizmalar doğal metabolik faaliyetleri ile enerji kaynağı olarak kullanılabilecek ürünlerde üretebilmektedirler. Bu duruma örnek olarak birçok mikroorganizmanın karbonhidratları kolayca alkole dönüştürebilme yeteneğini verebiliriz. Bununla birlikte, mikrobiyal yakıt teknolojileri güvenilirliği, yüksek verimliliği, temizliği ve minimum düzeyde toksik veya tamamen toksik olmayan yan ürünler üretmesi gibi avantajlara sahiptir. Bu avantajlar nedeniyle yenilenebilir enerji üretimi için alternatif bir kaynak olarak mikrobiyal yakıt teknolojisinin kullanılması son dönemlerde ileri teknolojik biyoprosesler arasında yer almaktadır. Bu çalışmanın amacı mikroorganizmalar kullanımı ile biyoyakıt ve biyoenerji üretim tekniklerinin kilit noktalarını vurgulamak ve mikrobiyal biyoproseslerle enerji üretiminin faydalarını incelemektir.

Use of Microbial Bioprocesses in Renewable Energy Production

With the increasing population and industrialization, the rapid increase in energy demands is a great concern in all countries of the world. In the current scenario, the world is witnessing a major energy crisis due to the limited availability of conventional energy sources and the rapid depletion of non-renewable fossil fuels. In this context, there is a need to search for alternative renewable fuels that can meet the world's energy needs in order to overcome dangerous environmental problems such as increasing population, global warming and greenhouse gas emissions. Recently, there has been an increasing interest in studies on the use of microorganisms such as bacteria and algae to convert of chemical energy stored in organic compounds into electrical energy. Today, renewable energy generation by microbial metabolic activities (especially the use of a wide variety of biomass and biological substrates) is considered a practical solution to the problem of energy scarcity. Microbial fuel cells can convert the energy collected in organic compounds into bioelectricity by catalyzing by oxidation. In addition, microorganisms can produce products that can be used as energy sources with their natural metabolic activities. For example, many microorganisms can easily convert carbohydrates into alcohol. However, microbial fuel technologies have advantages such as reliability, high efficiency, cleanliness, and producing minimal or completely non-toxic by-products. Due to these advantages, the use of microbial fuel technology as an alternative source for renewable energy production is among the advanced technological bioprocesses recently. The aim of this study is to highlight the key points of biofueland bioenergy production techniques with the use of microorganisms and to examine the benefits of energy production by microbial bioprocesses.

___

  • Alam, M.A., Wang, Z. 2019, Microalgea Biotechnology for Development of Biofuel and Wastewater Treatmen, 1st ed., Singapore: Springer.
  • Bahadar, A., Khan, M.B. 2013, Progress in energy form microalgea: A review, Renewable and Sustainable Energy Reviews, 27:128-148.
  • Bengisu, G. 2014, Alternatif Yakıt Kaynağı Olarak Biyoetanol, Alınteri Zirai Bilimler Dergisi, 27:43-52.
  • Borowitzka, M.A., Beardall, J., Raven, J.A. 2016, The Physiology of Microalgea, 1st ed., Switzerland: Springer.
  • Bose, A., Lin, R., Rajendran, K., O'Shea, R., Xia, A., Murphy, J.D. 2019, How to optimise photosynthetic biogas upgrading: a perspective on system design and microalgea selection, Biotechnology Advances, 37.
  • Bothe, H., Schmitz, O., Yates, M.G., Newton, W.E. 2010, Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria, Microbiology and Molecular Biology Reviews, 74:529-551.
  • Chen, Z., Niu, Y., Chen, C., Li, H. 2021, Optimization of bioethanol fermentation productivity in Saccharomyces cerevisiae by regulation of social behavior, Chemical Engineering Science, 246.
  • Chia, S.R., Nomanbhay, S.B.H.J.M., Chew, K.W., Munawaroh, H.S.H., Shamsuddin, A.B.D.H. , Show, P. L. 2022, Algae as potential feedstock for various bioenergy production, Chemosphere, 287.
  • Çılgın, E. 2015, 3. Nesil Biyoyakıt Teknolojisi Alglerin bir Dizel Motorunda Performans ve Egzoz Emisyonlarına Etkisinin Araştırılması, Iğdır Üniversitesi Fen Bilimleri Enstitütüsü Dergisi, 3:33-41.
  • Darcan, S., Sarıgül, N. Mikroorganizmalardan Tek Hücre Yağları Üretimi, Türk Mikrobiyal Cem Derg., 45:55-67.
  • Elcik, H., Çakmakçı, M. 2017, Mikroalg üretimi ve mikroalglerden biyoyakıt eldesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 32:795-820. Eroğlu, E., Melis, A. 2011, Photobiological hydrogen production: Recent advances and state of the art, Bioresource Technology, 102:8403-8413.
  • Guimaraes, L.H.S. 2012, Carbohydrates from Biomass: Sources and Transformation by Microbial Enzymes, INTECH Open Access Publisher.
  • Halim, R., Danquah, M.K., Webley, P.A. 2012, Extraction of oil from microalgea for biodiesel production: A review, Biotechnology Advances, 30:709-732.
  • Harun, R., Singh, M., Forde, G.M., Danquah, M.K. 2010, Bioprocess engineering of microalgea to produce a variety of consumer products, Renewable and Sustainable Energy Reviews, 14:1037-1047.
  • İnal, M. 2011, Sodyum Aljinat-Aşı-Poli (N-Vinil-2Pirolidon)'a İmmobilize Edilmiş Bazı Maya Türlerinden Biyoetanol Üretimi, Kimya Anabilim Dalı Doktora Tezi, Kırıkkale Üniversitesi, Kırıkkale.
  • Khetkorn, W., Rastogi, R.P., Incharoensakdi, A., Lİndblad, P., Madamwar, D., Pandey, A., Larroche, C. 2017, Microalgal hydrogen production - A review, Bioresource Technology, 243:1194-1206.
  • Kumar, R., Kumar, P. 2017, Future Microbial Applications for Bioenergy Production: A Perspective, Frontiers in Microbiology, 8. Majidian, P., Tabatabaei, M., Zeinolabedini, M., Naghshbandi, M.P., Chisti, Y. 2018, Metabolic engineering of microorganisms for biofuel production, Renewable and Sustainable Energy Reviews, 82:3863-3885.
  • Melikoğlu, M., Albostan, A. 2011, Türkiye'de Biyoetanol Üretimi ve Potansiyeli, Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 26:151-160.
  • Mubarak, M., Shaija, A., Suchithra, T.V. 2015, A review on the extraction of lipid from microalgea for biodiesel production, Algal Research, 7:117-123.
  • Noboa, J.D., Bernal, T., Solar, J., Pena, J.A. 2021, Kinetic modeling of batch bioethanol production form CCN- 51 Cocoa Mucilage, Journal of the Taiwan Institue of Chemical Engineers, 16.
  • Özdemir, Z. Ö., Mutlubaş, H. 2016, Biyodizel Üretim Yöntemleri ve Çevresel Etkileri, Kirklareli University Journal of Engineering and Science, 2:129-143.
  • Ramamurthy, P.C., Singh, P., Kapoor, D., Parihar, P., Samuel, J., Prasad, R., Kumar, A., Singh, J. 2021, Microbial biotechnological approaches: renewable bioprocessing for the future energy systems, Microbial Cell Factories, 20.
  • Rastogi, M., Shrivastava, S. 2017, Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermantation processes, Renewable and Sustainable Energy Reviews, 80:330-340.
  • Ritter, C.E.T., Camassola, M., Zampieri, D., Siveria, M.M., Dillon, J.P. 2013, Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol, Enzyme Research, 6.
  • Speece, R.E. 1996, Anaerobic biotechnology for industrial wastewater treatment, Environmental Science and Technology, 17:416-427.
  • Stojkovic, I. J., Stamenkovic, O.S., Povrenovic, D.S., Veljkovic, V.B. 2014, Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification, Renewable and Sustainable Energy Reviews, 32:1-15.
  • Sugözü, İ., Öner, C., Altun, Ş. 2010, The Performance and Emissions Characteristic of a Diesel Engine Fueled with Biodiesel and Diesel Fuel, Int.J.Eng.Research & Development, 2: 50-53.
  • Tanvir, R.U., Zhang, J., Canter, T., Chen, D., Lu, J., Hu, Z. 2021, Harnessing solar energy using phototropic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions, Renewable and Sustainable Energy Reviews, 146.
  • Tijani, H., Abdullah, N., Yuzir, A. 2015, Integration of microalgea biomass in biomethanation systems, Renewable and Sustainable Energy Reviews, 52:1610-1622.
  • Vasiliadou, I., Berna, A., Manchon, C., Melero, J.A., Martinez, F., Núñez, A.E., Puyol, D. 2018, Biological and Bioelectrochemical Systems for Hydrogen Production and Carbon Fixation Using Purple Phototrophic Bacteria, Frontiers in Energy Research, 6.
  • Viegas, C.V., Hachemi, I., Freitas, S.P., Arvela, P.M., Aho, A., Hemming, J., Smeds, A., Heinmaa, I., Fontes, F.B., Pereira, D.C.S., Kumar, N., Aranda, D.A.G., Murzin, D.Y. 2015, A route to produce renewable diesel from algea: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel, Fuel, 155:144-154.
  • Zabed, H.M., Akter, S., Yun, J., Zhang, G., Zahng, Y., Qi, X. 2020, Biogas from microalgea: Technologies, challenges and oppurtunities, Renewable and Sustainable Energy Reviews, 117.