Gömülü Sistem Tabanlı Lenssiz Mikroskopi Sisteminin Geliştirilmesi ve Patolojik Örnekler Üzerinde Test Edilmesi

Bu çalışmada, klinik şartlar için elverişli, düşük maliyetli ve taşınabilir genel amaçlı bir lenssiz mikroskopi sistemi tasarlanmış ve nümerik yaklaşımlar kullanılmadan görüntü işleme algoritmaları yardımıyla performansı arttırılmıştır. Işık kaynağından veya görüntüleme sensöründen kaynaklı oluşan gürültülerin önüne geçebilmek amacıyla görüntülere gerçek zamanlı olarak homojen alan düzeltmesi metodu uygulanmış ve ardından görüntülere interpolasyon uygulanmıştır. Mikroskopi sistemi gömülü sisteme entegre edilmiş, RGB renk uzayında görüntüleme yapabilmesi amaçlanmıştır. Elde edilen görüntülere gerçek zamanlı olarak homojen alan düzeltmesi ve interpolasyon uygulanarak görüntülerin SNR ve kontrast değeri iyileştirilmiştir. Görüntüleme sisteminin başarısı standart kalibrasyon çubuğu ile incelenmiştir. Ön-işleme öncesi ve sonrası için piksel yeğinlik değerleri hesaplanarak elde edilen iyileştirme miktarı gösterilmiştir. Sistemle muhtelif doku örnekleri incelenerek, medikal örnekler üzerindeki başarısı gösterilmiştir. Sistemin doku örneklerinin görüntülenmesinde 2.5 µm çözünürlüğe ulaştığı doku örnekleri üzerinde gösterilmiştir. Amaçlanan sistem, intraoperatif işlemlerde patolojik dokuların görüntülenmesinde kullanılabileceği, inceleme süresini düşürebileceği gösterilmiştir. Ayrıca elde edilen sistem diğer mikro boyutta olan medikal örneklerin incelenmesinde de kullanılabilecek potansiyeldedir.

Development of Embedded System-Based Lens-Less Microscopy System and Testing on Pathological Samples

In this study, a low cost and portable general-purpose lens-less microscopy system suitable for clinical conditions was designed and its performance was increased with the help of image processing algorithms without using numerical approaches. In order to avoid the noises caused by the light source or the imaging sensor, the flat field correction method was applied to the images in real time and then interpolation was applied to the images. The microscopy system is integrated into the embedded system and it is aimed to display in RGB color space. By applying flat field correction and interpolation to the obtained images in real time, the SNR and contrast value of the images were improved. The success of the imaging system was examined with a standard calibration chart. The improvement obtained by calculating the pixel intensity values for pre-processing and post-processing is shown. Various tissue samples were examined with the system and its success on medical samples was demonstrated. It has been shown on tissue samples that the system reaches 2.5 µm resolution in imaging tissue samples. It has been shown that the proposed system can be used for imaging pathological tissues in intraoperative procedures and can reduce the examination time. In addition, the obtained system has the potential to be used in the examination of other micro-sized medical samples.

___

  • Boyraz, Ömer Faruk, Muhammed Ali Pala, and Murat Erhan Çimen. 2019. “Mikrobilgisayar Tabanlı El- Bilek Damar Örüntüleri Kullanılarak Biyometrik Kimlik Doğrulama İşleminin Yapılması.” Academic Perspective Procedia 2019(November): 593–600.
  • Çimen, Murat Erhan et al. 2019. “Modelling of Chaotic Motion Video with Artificial Neural Networks.” CHAOS TEORY AND APPLICATIONS 1(1): 38–50.
  • Greenbaum, Alon et al. 2012. “Imaging without Lenses: Achievements and Remaining Challenges of Wide-Field on-Chip Microscopy.” Nature Methods 9(9): 889–95.
  • Hooke, Robert. 1665. Micrographia by Robert Hooke, 1665. The British Library.
  • Ji, Honghao, David Sander, Alfred Haas, and Pamela A. Abshire. 2007. “Contact Imaging: Simulation and Experiment.” IEEE Transactions on Circuits and Systems I: Regular Papers 54(8): 1698–1710.
  • Mudanyali, Onur et al. 2009. “Lensless On-Chip Imaging of Cells Provides a New Tool for High-Throughput Cell-Biology and Medical Diagnostics.” Journal of Visualized Experiments.
  • Pala, Muhammed Ali et al. 2019. “Meme Kanserinin Teşhis Edilmesinde Karar Ağacı Ve KNN Algoritmalarının Karşılaştırmalı Başarım Analizi.” Academic Perspective Procedia 2(3): 544–52.
  • Polytechnique, Cole, and Rale D E Lausanne. 2014. “Design and Implementation of CMOS Image Sensors for Biomedical Applications.” 6229.
  • Seo, Sungkyu et al. 2009. “Lensfree Holographic Imaging for On-Chip Cytometry and Diagnostics.” Lab on a chip 9(6): 777–87.
  • Wu, Yichen, and Aydogan Ozcan. 2018. “Lensless Digital Holographic Microscopy and Its Applications in Biomedicine and Environmental Monitoring.” Methods 136: 4–16. http://dx.doi.org/10.1016/j.ymeth.2017.08.013 (February 7, 2019).
  • Yang, Ke et al. 2019. “Recent Development of Portable Imaging Platforms for Cell-Based Assays.” Biosensors and Bioelectronics 124–125(October 2018): 150–60. https://doi.org/10.1016/j.bios.2018.10.024.