Yeni İzole Edilmiş Mantar Aspergillus oryzae ile Brilliant Green Boyar Maddesinin Sulu Çözeltilerinden Biyosorpsiyonu Üzerine Araştirma: Rsm-Optimize Edilmiş Süreç Değişkenleri ve Daphnia magna Biyodeneyi

Biyosorpsiyon, boyaların atık sulardan uzaklaştırılması için etkili bir prosestir. Bu çalışmada, sulu çözeltilerden brilliant green (BG) boya biyosorpsiyonunda biyosorbent olarak yeni izole edilmiş bir mantar olan Aspergillus oryzae kullanıldı. Biyokütle dozu (0.01-0.12g), başlangıç BG konsantrasyonu (5-30 mg L-1) ve işlem süresi (10-120 dk) gibi üç bağımsız faktörün etkisi, kesikli teknik kullanılarak A. oryzae tarafından BG biyosorpsiyonunda gerçekleştirilmiştir. Deneysel tasarım, yani tepki yüzeyi metodolojisi, yukarıda seçilen süreç faktörlerinin optimum seviyelerini belirlemeyi amaçlamıştır. Maksimum biyosorpsiyon giderimi için optimum koşullar biyokütle dozu, başlangıç BG konsantrasyonu ve işlem süresi için sırasıyla 0.10 g, 17.25 mg L-1 ve 85 dakika olarak bulunmuştur. Bu optimize koşullar altında, BG'nin %67,32 oranında giderilmesi sağlandı. D. magna biyo-deneyi ile muamele edilmiş BG boya çözeltisinin ölüm oranındaki bir azalma belirlendi. Bu durum, biyosorpsiyon işlemi sonrasında boyanın toksik etkisinde bir azalma meydana gelmiş olabileceğini göstermiştir.

Investigation on Biosorption of Brilliant Green Dye from Aqueous Solutions by Newly Isolated Fungus Aspergillus oryzae: Rsm-Optimized Process Variables and Daphnia magna Bioassay

Biyosorpsiyon, boyaların atık sulardan uzaklaştırılması için etkili bir prosestir. Bu çalışmada, sulu çözeltilerden brilliant green (BG) boya biyosorpsiyonunda biyosorbent olarak yeni izole edilmiş bir mantar olan Aspergillus oryzae kullanıldı. Biyokütle dozu (0.01-0.12g), başlangıç BG konsantrasyonu (5-30 mg L-1) ve işlem süresi (10-120 dk) gibi üç bağımsız faktörün etkisi, kesikli teknik kullanılarak A. oryzae tarafından BG biyosorpsiyonunda gerçekleştirilmiştir. Deneysel tasarım, yani tepki yüzeyi metodolojisi, yukarıda seçilen süreç faktörlerinin optimum seviyelerini belirlemeyi amaçlamıştır. Maksimum biyosorpsiyon giderimi için optimum koşullar biyokütle dozu, başlangıç BG konsantrasyonu ve işlem süresi için sırasıyla 0.10 g, 17.25 mg L-1 ve 85 dakika olarak bulunmuştur. Bu optimize koşullar altında, BG'nin %67,32 oranında giderilmesi sağlandı. D. magna biyo-deneyi ile muamele edilmiş BG boya çözeltisinin ölüm oranındaki bir azalma belirlendi. Bu durum, biyosorpsiyon işlemi sonrasında boyanın toksik etkisinde bir azalma meydana gelmiş olabileceğini göstermiştir.

___

  • Abe, F.R., Machado, A.L., Soares, A.M.V.M., Oliveira, D.P., Pestana, J.T.L. (2019). Life history and behavior effects of synthetic and natural dyes on Daphnia magna. Chemosphere 236: 124390.
  • Akash, D., Animesh, D., Biswajit, S. (2019). Ultrasound-aided rapid and enhanced adsorption of anionic dyes from binary dye matrix onto novel hematite/polyaniline nanocomposite: response surface methodology optimization. Appl. Organometal. Chem. 34: 5353.
  • Allouss, D., Essamlali, Y., Amadine, O., Chakir, A., Zahouily, M. (2019). Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: adsorption kinetics, isotherm, thermodynamics and reusability studies, RSC. Adv. 9: 37858-37869.
  • Angelika, T., Adam, B., Jarosław, D., Krzysztof, K., Brygida, Ś. (2021). Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Sci. Total. Environ. 763: 143038.
  • Arabpour, A., Dan, S., Hashemipour, H. (2021). Preparation and optimization of novel graphene oxide and adsorption isotherm study of methylene blue. Arab. J. Chem. 14: 1-13.
  • Ashish, K., Nayak, A.P. (2018). Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: Single- and multi-parameter optimization studies. J. Environ. Manage. 217: 573–591.
  • Babu, S.S., Mohandass, C., Vijayaraj, A.S., Dhale, M.A. (2015). Detoxification and color removal of Congo Red by a novel Dietzia sp.(DTS26)–a microcosm approach. Ecotoxicol. Environ. Saf. 114: 52–60.
  • Barata, C., Varo, I., Navarro, J.C., Arun, S., Porte, C. (2005). Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 140: 175–186.
  • Cheraghipour, E., Pakshir, M. (2021). Environmentally friendly magnetic chitosan nano-biocomposite for Cu(II) ions adsorption and magnetic nano-fluid hyperthermia: CCD- RSM design. J. Environ. Chem. Eng. 9: 1-14.
  • Deshmukh, R., Khardenavis, A.A., Purohit, H.J. (2016). Diverse metabolic capacities of Fungifor bioremediation. Indian. J. Microbiol. 56: 247–264.
  • Dil, E.A., Ghaedi, M., Asfaram, A. (2019). Application of hydrophobic deep eutectic solvent asthe carrier for ferrofluid: a novel strategy for pre-concentration and determination of mefenamic acid in human urine samples by high performance liquid chromatography under experimental design optimization. Talanta 202: 526-530.
  • Ebert, D. (2005). Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda (MD)
  • Fu, Y., Viraraghavan, T. (2001) Fungal decolorization of dye wastewaters: a review. Bioresour. Technol. 79: 251-262.
  • Fu, Y., Viraraghavan, T. (2002) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv. Environ. Res. 7: 239-24.
  • Futalan, C.M., Tsai, W.C., Lin, S.S., Dalida, M.L., Wan, M., Hsien, K. (2012). Copper, nikel and lead adsorption from aqueous solution using chitosan-immobilized on bentonite in ternary system. Sustain. Environ. Res. 22: 345–355.
  • Kharat, D.S. (2015). Preparing agricultural residue-based adsorbents for removal of dyes from effluents-a review. Braz. J. Chem. Eng. 32: 1–12.
  • Koivisto, S. (1995). Is Daphnia magna an ecologically representative zooplankton species in toxicity tests? Environ. Pollut. 90: 263–267.
  • Kousha, M., Tavakoli, S., Daneshvar, E, Vazirzadeh, A., Bhatnagar, A. (2015). Central composite design optimization of Acid Blue 25 dye biosorption using shrimp shell biomass. J. Mol. Liq. 207: 266-273.
  • Kumar, C.G., Mongolla, P., Joseph, J., Sarma, V.U.M. (2012). Decolorization and biodegradation of triphenylmethane dye, BG, by Aspergillus sp Isolated from Ladakh, India. Process. Biochem. 47: 1388–1394.
  • Li, S., Huang, J., Mao, J., Zhang, L., He, C., Chen, G., Parkin, I.P., Lai, Y. (2019). In vivo and in vitro efficient textile wastewater remediation by Aspergillus niger biosorbent. Nanoscale Adv. 1: 168–176.
  • Louhichi, G., Bousselmi, L., Ghrabi, A., Khouni, I. (2018). Process optimization via response surface methodology in the physicochemical treatment of vegetable oil refinery wastewater. Environ. Sci. Pollut. Res. Int. 26: 18993–19011.
  • Michalak, I., Chojnacka, K., Korniewicz, D. (2020). Effect of marine macroalga enteromorpha sp. Enriched with Zn(II) and Cu(II) ions on the digestibility, meat quality and carcass characteristics of growing pigs. J. Mar. Sci. Eng. 8: 347.
  • Milani Shirvan, K., Mamourian, M., Mirzakhanlari, S, Ellahi R (2017). Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: A sensitivity analysis by response surface methodology. Powder. Technol. 313: 99–111.
  • Nwabanne JT, Okpe EC, Asadu CO, Onu, C.E. (2017). Application of response surface methodology in phenol red adsorption using kola nut (cola acuminata) shell activated carbon. Int. Res. J. Pure. Appl. Chem. 15: 1–14.
  • Oguanobi, N.C., Onu, C.E., Onukwuli, O.D. (2019). Adsorption of a dye (crystal violet) on an acid modified non-conventional adsorbent. J. Chem. Technol. Metallurgy. 54: 95–110.
  • Onu, C.E., Oguanobi, N.C., Okonkwo, C.O., Nnamdi-Bejie, J. (2020). Application of modified agricultural waste in the adsorption of bromocresol green dye. Asian. J. Chem. Sci. 7: 15–24.
  • Pathania, D., Sharma, S., Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 10: 1445–1451.
  • Pormazar, S.M., Dalvand, A. (2020). Adsorption of Reactive Black 5 azo dye from aqueous solution by using amine-functioned Fe3O4 nanoparticles with L-arginine: Process optimisation using RSM, International Journal of Environmental Analytical Chemistry, in press, https://doi.org/10.1080/03067319.2020.1743278
  • Przystaś, W., Zabłocka-Godlewska, E., Grabińska-Sota, E. (2013). Effectiveness of Dyes Removal by Mixed Fungal Cultures and Toxicity of Their Metabolites. Water Air Soil Pollut. 224: 1534.
  • Sadhukhan, B., Mondal, N.K., Chattoraj, S. (2016). Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala International Journal of Modern Science. 2: 145-155.
  • Salman, T.A., Ali, M.I. (2019). Eriochrome Black T dye adsorption onto natural and modified orange peel. Re. J Chem. Environ. 23: 155–169.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç