MEMS Tabanlı Mikro Rezonatörün Tasarımı ve Analizi

Mikro-Elektro-Mekanik (MEMS) rezonatörler uzun zamandır sensör tasarımı için kullanılmaktadır ve artık günümüzde güç elektroniğialanında osilatörler olarak giderek önem kazanmaktadır. Farklı metalik malzemeler kullanılarak COMSOL programı ile deformasyonanalizi bu çalışmada gerçekleştirilmiştir.Bu çalışmada, bir mikro mekanik filtrenin parçası olarak tasarlanan bir yüzey mikro işlenmiş MEMS rezonatörü ayrıntılı olarak analizedilmiştir. Geliştirilen model, uygulanan 100 V DC gerilim ile rezonatörün analizini gerçekleştirir. Mikro rezonatör içerisinden geçenakım, termal genleşme ile ısı enerjisini dağıtmaktadır. Bu genleşme, rezonatör içerisinden geçen akım ve yayılan sıcaklığa bağlı olarakdeğişmektedir. COMSOL yazılımı kullanılarak 400 μm uzunluğunda ve 50 μm kalınlığında dikdörtgen bir kiriş olarak tasarlananrezonatör için polikristalin silikon, demir, alüminyum, gümüş ve altın malzeme ataması yapılarak gerekli analizler yapılmıştır. Girişpotansiyeli rezonatörün hava boşluğu merkezinden uygulanarak y ekseninde meydana gelen deformasyonlar ölçülmüştür.En yüksek deformasyon 0.062 µm ile alüminyum malzemede ortaya çıkarken; en düşük deformasyon 0.029 µm ile polikristalin silikonmalzemede ölçülmüştür. Demir, gümüş ve altın malzemelerinde ise sırasıyla 0.030 µm, 0.052 µm ve 0.059 µm deformasyon verileriölçülmüştür. Sonuç olarak, mikro rezonatör tasarımında kullanılan alüminyumun diğer metalik rezonatörler ile kıyaslandığı zamanönerilen geometri için önemli miktarda deformasyon verdiği gözlemlenmiştir.

Design and Analysis of MEMS Based Micro Resonator

Micro-Electro-Mechanical (MEMS) resonators have long been used for sensor design and are now becoming increasingly important as oscillators in the field of power electronics. Deformation analysis with COMSOL program using different metallic materials was carried out in this study. In this study, a surface micromachined MEMS resonator designed as part of a micromechanical filter is analyzed in detail. The developed model performs the analysis of the resonator with the applied 100 V DC voltage. The current passing through the microresonator dissipates heat energy by thermal expansion. This expansion depends on the current flowing through the resonator and the radiated temperature. Using the COMSOL software, the resonator was designed as a rectangular beam with a length of 400 μm and a thickness of 50 μm. By applying the input potential from the centre of the air gap of the resonator, the deformations in the y-axis were measured. The highest deformation occurred in aluminium material with 0.062 µm; the lowest deformation was measured in polycrystalline silicon material with 0.029 µm. The deformation data of iron, silver and gold materials were measured as 0.030 µm, 0.052 µm and 0.059 µm, respectively. As a result, it is observed that aluminium used in microresonator design gives a significant amount of deformation for the proposed geometry when compared with other metallic resonators.

___

  • Ashraf, M. W., Tayyaba, S., & Afzulpurkar, N. (2011). Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. International journal of molecular sciences, 12(6), 3648-3704.
  • Ertugrul I., Akkus N. ve Yüce H., Fabrication of MEMS based electrothermal microactuators with additive manufacturing Technologies, Materiali in tehnologije, 53 (5), 665-670, 2019.
  • Hajjaj, A. Z., Hafiz, M. A., & Younis, M. I. (2017). Mode coupling and nonlinear resonances of MEMS arch resonators for bandpass filters. Scientific reports, 7, 41820.
  • Kourani, A., Song, Y. H., Arakawa, B., Lu, R., Guan, J., Gao, A., & Gong, S. (2017, June). A 150 MHz voltage controlled oscillator using lithium niobate RF-MEMS resonator. In 2017 IEEE MTT-S International Microwave Symposium (IMS) (pp. 1307-1310).
  • Lee, K. W., Kanno, S., Kiyoyama, K., Fukushima, T., Tanaka, T., & Koyanagi, M. (2010). A cavity chip interconnection technology for thick MEMS chip integration in MEMS-LSI multichip module. Journal of Microelectromechanical Systems, 19(6), 1284-1291.
  • Nisar, A., Afzulpurkar, N., Mahaisavariya, B., & Tuantranont, A. (2008). MEMS-based micropumps in drug delivery and biomedical applications. Sensors and Actuators B: Chemical, 130(2), 917-942.
  • Yang, Y., Gao, A., Lu, R., & Gong, S. (2017, January). 5 GHz lithium niobate MEMS resonators with high FoM of 153. In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 942-945).
  • Younis, M. I., Abdel-Rahman, E. M., & Nayfeh, A. (2003). A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical systems, 12(5), 672-680.
  • Zhao, C., Montaseri, M. H., Wood, G. S., Pu, S. H., Seshia, A. A., & Kraft, M. (2016). A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sensors and Actuators A: Physical, 249, 93-111.
  • Zhao, C., Pandit, M., Sun, B., Sobreviela, G., Zou, X., & Seshia, A. (2017). A closed-loop readout configuration for mode-localized resonant MEMS sensors. Journal of Microelectromechanical Systems, 26(3), 501-503.