Sağlık Alanında Kullanılan Derin Öğrenme Yöntemleri

Uzun süreli tedavi gerektiren kanser ve benzeri hastalıklara yakalanan hastaların ölüm riski yüksektir. Bu riski azaltmak ve hastanınyaşam süresini uzatmak için tıpta, teknolojideki gelişmelerin de kullanıldığı çalışmalar bulunmaktadır. Bu çalışmalarda hastalığıntedavisi için çok önemli olan erken tanı yöntemlerine odaklanılmıştır. Yapay zekâ, makinelerin insan beyninin çalışmasını taklitederek karar verme ve tahmin etme gibi çözülmesi zor olan problemlerin çözümüne imkân tanıyan bir bilim dalıdır. Yapay zekânın biralt dalı olan makine öğrenmesi ise kodlanmış olan hazır talimatları kullanarak çözüm üretmek yerine; örneklerden öğrenerek, görüntü,resim ve ses tanıma gibi birçok zor probleme çözüm getirmektedir. Son yıllarda birçok alanda kullanılan makine öğrenmesinin,hastalıkların erken teşhisinde kullanılabilme potansiyeli de bulunmaktadır. Konu ile ilgili yapılan çalışmalar özellikle makineöğrenmesinin bir alt dalı olan derin öğrenme yöntemlerine odaklanmıştır. Bu çalışmanın amacı sağlık alanında uygulanan derinöğrenme yöntemlerinin çalışma prensiplerini ve hangi hastalıklarda kullanıldığını, ilgili literatür ışığında ortaya koymaktır. Buçalışmanın sonucunda, hastalığın teşhisinde kullanılan verilere uygun derin öğrenme yönteminin tercih edilmesinin, hastalığa erkentanı konma başarısını arttıracağı düşünülmektedir.

Deep Learning Methods used in the field of Health

Patients with cancer and similar diseases requiring long-term treatment have a high risk of death. In order to reduce this risk and extend the life expectancy of the patient, there are studies that use advances in technology in medicine. These studies focused on early diagnosis methods which are very important for the treatment of the disease. Artificial intelligence is a branch of science that allows machines to solve problems that are difficult to solve, such as making decisions and predictions, by imitating the workings of the human brain. Machine learning, which is a sub-branch of artificial intelligence, instead of producing solutions by using ready-coded instructions; learning from examples, it provides solutions to many difficult problems such as image, picture and voice recognition. Machine learning, which has been used in many areas in recent years, has the potential to be used in early diagnosis of diseases. Studies on the subject have focused on deep learning methods, which is a sub-branch of machine learning. The aim of this study is to reveal the working principles of deep learning methods applied in the field of health and in which diseases they are used in the light of the related literature. As a result of this study, it is thought that choosing a deep learning method appropriate to the data used in the diagnosis of the disease will increase the success of early diagnosis of the disease.

___

  • [1] Kaya U., Yılmaz A. (2019). Derin Öğrenme, 1-2, ISBN:978-605-2118-399.
  • [2] Buduma, N. (2015). Fundamentals of deep learning, Copyright © 2015 Nikhil Buduma. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. November 2015, First edition.
  • [3] Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., Yang, G. Z. (2017). Deep learning for health informatics, in IEEE Journal of Biomedical and Health Informatics, 21(1), 4-21.
  • [4] Hinton, G. E., Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks, Science, 313(5786), 504– 507.
  • [5] Ranzato, M., Poultney, C., Chopra, S., LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model, Advances in Neural Information Processing Systems (NIPS 2006), MIT Press, 1137-1144.
  • [6] Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders, ICML '08 Proceedings of the 25th international conference on Machine learning, Helsinki, Finland, 1096-1103.
  • [7] Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction, in Proceedings of the 28 th International Conference on Machine Learning, Bellevue, WA, USA, 833–840.
  • [8] Masci, J., Meier, U., Cireşan, D., Schmidhuber, J. (2011). Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction, Artificial Neural Networks and Machine Learning – ICANN 2011, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 6791, 52-59.
  • [9] Hinton, G. E. , Osindero, S., Teh, Y. W. (2006). A fast learning algorithm for deep belief nets, Neural Comput., 18(7), 1527–1554.
  • [10] Salakhutdinov, R., Hinton, G. E. (2009). Deep Boltzmann machines, in Proceedings of the 12th International Confe-rence on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwater Beach, Florida, USA, 1, 3.
  • [11] Younes, L. (1999). On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates, Stochastics: An Int. J. Probab. Stochastic Process, 65, 177–228.
  • [12] Williams, R. J., Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks, Neural Comput, 1(2), 270–280.
  • [13] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). Gradient-based learning applied to document recognition, in Proceedings of the IEEE, 86(11), 2278-2324.
  • [14] Hubel, D. H., Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol, 160(1), 106–154.
  • [15] Krizhevsky, A., Sutskever, I., Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks, Communications of the ACM, New York, NY, USA, 60(6), 84-90.
  • [16] Szegedy, C. et al. (2015). Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 1-9.
  • [17] http://www.iro.umontreal.ca/~pift6266/H10/notes/mlintro.html, ( Erişim tarihi: 13.03.2019).
  • [18] Hinton, G. E., Osindero, S., Teh Y., (2006). A fast learning algorithm for deep belief nets, Neural Computation, 18, 1527-1554.
  • [19] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H. (2007). Greedy layer-wise training of deep networks, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems 19 (NIPS 2006), MIT Press, 153-160.
  • [20] Hinton, G. E., Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks, Science, 313(5786), 504- 507.
  • [21] Salakhutdinov, R. R., Hinton, G. E. (2007). Learning a nonlinear embedding by preserving class neighbourhood structure, Journal of Machine Learning Research - Proceedings Track, 2, 412-419.
  • [22] Le Roux, N., Bengio, Y. (2008). Representational power of restricted Boltzmann machines and deep belief networks, Neural Comput., 20(6), 1631-1649.
  • [23] Sutskever, I., Hinton, G. E. (2008). Deep, narrow sigmoid belief networks are universal approximators, Neural Comput., 20(11), 2629-2636.
  • [24] Ranzato, M., Huang, F.J., Boureau, Y., LeCun, Y. (2007). Unsupervised learning of invariant feature hierarchies with applications to object recognition, 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 1-8.
  • [25] Suwajanakorn, S., Seıtz, S. M., Kemelmacher-Shlızerman, I. (2017). Synthesizing Obama: Learning Lip Sync from Audio, ACM Trans. Graph. journal, New York, USA, 36(4).
  • [26] Dahl, R., Norouzi, M., Shlens, J. (2017). Pixel recursive super resolution, CoRR journal, abs/1702.00783.
  • [27] Cao, Z., Simon, T., Wei, S. E., Sheikh, Y. (2016). Realtime multi-person 2d pose estimation using part affinity fields, CoRR,abs/1611.08050.
  • [28] Karpathy, A., Li, F. F. (2014). Deep visual-semantic alignments for generating image descriptions”, CoRR, abs/1412.2306.
  • [29] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V. (2016). Domainadversarial training of neural networks, Journal of Machine Learning Research, 59, 1-35.
  • [30] http://www.deepglint.com/skill?pageState=%27intelligentAlgorithm%27, (Erişim tarihi: 19.03.2019)
  • [31] Nguyen, A. M., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J. (2016). Synthesizing the preferred inputs for neurons in neural networks via deep generator networks”, CoRR, abs/1605.09304.
  • [32] Radford, A., Metz, L., Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks, CoRR, abs/1511.06434.
  • [33] Reiman, D. M., Göhre, B. E. (2019). Deblending galaxy superpositions with branched generative adversarial networks”, 10.1093/mnras/stz575, Monthly Notices of the Royal Astronomical Society, 2(485), 2617-2627.
  • [34] Wu, Y., Schuster, M., Chen, Z. et al. (2016). Google’s neural machine translation system: bridging the gap between human and machine translation, CoRR, abs/1609.08144.
  • [35] Kuang, Y. (2019). Deep neural network for deep sea plankton classification, Stanford University, http://cs231n.stanford.edu/reports/2015/pdfs/ymkuang_project.pdf.
  • [36] Al-Barazanchi, H. A., Verma, A., Wang, S. (2019). Plankton image classification using convolutional neural networks, Department of Computer Science, California State University, Fullerton, CA, USA,https://pdfs.semanticscholar.org/ed26/f44893b2e53147ca86b4e7bfaa1eeeb9832f.pdf.
  • [37] Yan, J., Li, X., Cui, Z. (2017). A more efficient ESA architecture for plankton classification, From book Computer Vision: Second CCF Chinese Conference, CCCV 2017, Tianjin, China, Proceedings, Part III, 198-208.
  • [38] Classifying plankton with deep neural networks. (2015). http://benanne.github.io/2015/03/17/plankton.html.
  • [39] Isola, P., Zhu, J. Y., Zhou, T., Efros, A.A. (2016). Image-to-image translation with conditional adversarial networks, CoRR, abs/1611.07004.
  • [40] http://www.robots.ox.ac.uk/~vgg/projects.html. (Erişim tarihi: 23.03.2019).
  • [41] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M. A. (2013). Playing atari with deep reinforcement learning, CoRR, abs/1312.5602.
  • [42] Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., Andriluka, M., Rajpurkar, P., Migimatsu, T., ChengYue, R., Mujica, F. A., Coates, A., Ng, A. Y. (2015). An empirical evaluation of deep learning on highway driving, CoRR, abs/1504.01716.
  • [43] Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D. (2018). Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection, The International Journal of Robotics Research, 37(4–5), 421–436.
  • [44] Yu, J., Weng, K., Liang, G. et al. (2013). A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation, Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on; Shenzhen, 1175-1180.
  • [45] Zhou, Y., Ebrahimi, S., Arik, S.Ö., Yu, H., Liu, H., Diamos, G. (2018). Resource-efficient neural architect, CoRR, abs/1806.07912, 1806-07912.
  • [46] Li, X., Xiong, H., Wang, H., Rao, Y., Liu, L., Huan, J. (2019). Delta: deep learning transfer using feature map with attention for convolutional networks, CoRR, abs/1901.09229.
  • [47] Gebru, T., Krause, J., Wang, Y., Chen, D., Deng, J., Aiden, E.L., Fei-Fei, L. (2017). Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States, Proceedings of the National Academy of Sciences Dec 2017, 114 (50), 13108-13113.
  • [48] Fakoor, R., Ladhak, F., Nazi, A., Huber, M. (2013). Using deep learning to enhance cancer diagnosis and classification, The 30th International Conference on Machine Learning (ICML 2013), WHEALTH workshop, 1–7.
  • [49] Ibrahim, R., Yousri, N. A., Ismail, M. A., El-Makky, N. M. (2014). Multi-level gene/mirna feature selection using deep belief nets and active learning, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, 3957-3960.
  • [50] Khademi, M., Nedialkov, N. S. (2015). Probabilistic graphical models and deep belief networks for prognosis of breast cancer, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, 727-732.
  • [51] Quang, D., Chen, Y., Xie, X. (2014). Dann: a deep learning approach for annotating the pathogenicity of genetic variants, Bioinformatics, 31, 761–763.
  • [52] Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., Pande, V. (2015). Massively multitask networks for drug discovery, arXiv:1502.02072.
  • [53] Zhang, S. et al. (2016). A deep learning framework for modeling structural features of rna-binding protein targets, Nucleic Acids Res, 44(4), e32.
  • [54] Tian, K., Shao, M., Wang, Y., Zhou, S., Guan, J. (2016). Boosting compound-protein interaction prediction by deep learning, Methods, 110, 64-72.
  • [55] Angermueller, A., Lee, H., Reik, W., Stegle, O. (2017). Accurate prediction of single-cell dna methylation states using deep learning, Genome Biology, 18(1), 67.
  • [56] Shan, J., Li, L. (2016). A deep learning method for microaneurysm detection in fundus images, 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, 357-358.
  • [57] Mansoor A. et al. (2016). Deep learning guided partitioned shape model for anterior visual pathway segmentation, IEEE Trans. Med. Imag, 35(8): 1856–1865.
  • [58] Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D. (2016). 3d deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients, in Proc. MICCAI, 2016, Lecture Notes in Computer Science, 9901, 212–220.
  • [59] Kleesiek, J. et al. (2016). Deep mri brain extraction: a 3d convolutional neural network for skull stripping, NeuroImage, 129, 460–469.
  • [60] Jiang, B., Wang, X., Luo, J., Zhang, X., Xiong, Y., Pang, H. (2015). Convolutional neural networks in automatic recognition of trans-differentiated neural progenitor cells under bright-field microscopy, 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, 122-126.
  • [61] Havaei, M., Guizard, N., Larochelle, H., Jodoin, P. (2016). Deep learning trends for focal brain pathology segmentation in mri, Machine Learning for Health Informatics, Springer, 25-148.
  • [62] Suk, H. I. et al. (2014). Hierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosis, NeuroImage, 101, 569–582.
  • [63] Kuang, D., He, L. (2014). Classification on adhd with deep learning”, 2014 International Conference on Cloud Computing and Big Data, Wuhan, 27–32.
  • [64] Li, F., Tran, L., Thung, K.H., Ji, S., Shen, D., Li, J. (2015). A robust deep model for improved classification of ad/mci patients”, IEEE J. Biomed. Health Inform. 9(5), 1610–1616.
  • [65] Fritscher, K., Raudaschl, P., Zaffino, P., Spadea, M. F., Sharp, G. C., Schubert, R. (2016). Deep neural networks for fast segmentation of 3d medical images, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016, Lecture Notes in Computer Science, Springer, Cam, 9901, 158-165.
  • [66] Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S. (2016). Multi-scale deep networks and regression forests for direct bi-ventricular belief estimation, Med. Image Anal., 30, 120–129.
  • [67] Brosch, T., Tam, R. (2013). Manifold learning of brain mris by deep learning, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 8150, 633-640.
  • [68] Xu, T., Zhang, H., Huang, X., Zhang, S., Metaxas, D. N. (2016). Multimodal deep learning for cervical dysplasia diagnosis, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Springer, 115–123.
  • [69] Avendi, M., Kheradvar, A., Jafarkhani, H. (2016). Acombined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri, Med. Image Anal., 30, 108–119.
  • [70] Yu, J., Chen, J., Xiang, Z. Q., Zou, Y. (2015). A hybrid convolutional neural networks with extreme learning machine for WCE image classification, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, 1822-1827.
  • [71] Roth, H. R. et al. (2015). Anatomy-specific classification of medical images using deep convolutional nets, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, 101-104.
  • [72] Grinsven, M. J. V., Ginneken, B. V., Hoyng, C. B., Theelen, T., S´anchez, C. I. (2016). Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images, IEEE Trans. Med. Imag, 35(5), 1273–1284.
  • [73] Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S. (2016). Lung pattern classification for interstitial lung diseases using a deep convolutional neural network, IEEE Trans. Med. Imag., 35(5), 1207–1216.
  • [74] Cao, Y. et al. (2016). Improving tuberculosis diagnostics using deep learning and mobile health technologies among resourcepoor and marginalized communities, 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, 274-281.
  • [75] Chen, H. et al. (2015). Standard plane localization in fetal ultrasound via domain transferred deep neural networks, IEEE J. Biomed. Health Inform., 19(5), 1627–1636.
  • [76] Shin, H. C. et al. (2016). Deep convolutional neural networks for computer aided detection: ESA architectures, dataset characteristics and transfer learning, IEEE Trans. Med. Imag., 35(5),1285–1298.
  • [77] Tajbakhsh, N. et al. (2016). Convolutional neural networks for medical image analysis: full training or fine tuning?, IEEE Trans. Med. Imag., 35(5): 1299–1312.
  • [78] Yan, Z. et al. (2016). Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition, IEEE Trans. Med. Imag., 35(5), 1332–1343.
  • [79] Greenspan, H., Ginneken, B. V., Summers, R. M. (2016). Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique”, IEEE Trans. Med. Imag, 35(5), 1153–1159.
  • [80] Cheng, J. Z. et al (2016). Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans”, Sci. Rep, 6, 24454.
  • [81] Kondo, T., Ueno, J., Takao, S. (2014). Medical image recognition of abdominal multi-organs by hybrid multi-layered gmdh-type neural network using principal component-regression analysis, 2014 Second International Symposium on Computing and Networking, Shizuoka, 157-163.
  • [82] Kondo, T., Junji, U., Takao, S. (2014). Hybrid feedback gmdh-type neural network using principal component-regression analysis and its application to medical image recognition of heart regions, 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), Kitakyushu, 1203-1208.
  • [83] Kondo, T., Takao, S., Ueno, J. (2015). The 3-dimensional medical image recognition of right and left kidneys by deep gmdh-type neural network, 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, 313- 320.
  • [84] Kondo, T., Ueno, J., Takao, S. (2016). Medical image diagnosis of lung cancer by deep feedback gmdh-type neural network, Robot. Netw. Artif. Life, 2(4), 252–257.
  • [85] Rose, D. C., Arel, I., Karnowski, T.P., Paquit, V. C. (2010). Applying deep-layered clustering to mammography image analytics, 2010 Biomedical Sciences and Engineering Conference, Oak Ridge, TN, 1-4.
  • [86] Zhou, Y., Wei, Y. (2016). Learning hierarchical spectral-spatial features for hyperspectral image classification, IEEE Trans. Cybern, 46(7), 1667–1678.
  • [87] Lerouge, J., Herault, R., Chatelain, C., Jardin, F., Modzelewski, R. (2015). Ioda: an input/output deep architecture for image labeling, Pattern Recognit., 48(9), 2847–2858.
  • [88] Wang, J., MacKenzie, J. D., Ramachandran, R., Chen, D. Z. (2016). A deep learning approach for semantic segmentation in histology tissue images, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Springer, 176–184.
  • [89] Che, Z., Purushotham, S., Khemani, R., Liu, Y. (2015). Distilling knowledge from deep networks with applications to healthcare domain, NIPS Workshop on Machine Learning for Healthcare (NIPS-MLHC),1-13.
  • [90] Miotto, R., Li, L., Kidd, B. A., Dudley, J. T. (2016). Deep patient: an unsupervised representation to predict the future of patients from the electronic health records, Sci. Rep., 6, 1–10.
  • [91] Nie, L., Wang, M., Zhang, L., Yan, S., Zhang, B., Chua, T. S. (2015). Disease inference from health-related questions via sparse deep learning, IEEE Trans. Knowl. Data Eng, 27(8), 2107–2119.
  • [92] Mehrabi, S. et al. (2015). Temporal pattern and association discovery of diagnosis codes using deep learning, 2015 International Conference on Healthcare Informatics, Dallas, TX, 408-416.
  • [93] Shin, H., Lu, L., Kim, L., Seff, A., Yao, J., Summers, R. M. (2016). Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation, JMLR 2016, 17(107), 1−31.
  • [94] Lipton, Z. C., Kale, D. C., Elkan, C., Wetzel, R. C. (2016). Learning to diagnose with lstm recurrent neural networks, 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4.
  • [95] Liang, Z., Zhang, G., Huang, J. X., Hu, Q. V. (2014). Deep learning for healthcare decision making with EMRs, 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Belfast, 556-559.
  • [96] Putin, E. et al. (2016). Deep biomarkers of human aging: application of deep neural networks to biomarker development, Aging, 8, 1021-33.
  • [97] Futoma, J., Morris, J., Lucas, J. (2015). A comparison of models for predicting early hospital readmissions, Journal of Biomedical Informatics, 56, 229–238.
  • [98] Zhao, A., Qi, L., Li, J., Dong, J.,Yu, H. (2018). A hybrid spatio-temporal model for detection and severity rating of parkinson’s disease from gait data, Neurocomputing, 315, 1-8.
  • [99] Purushotham, S., Meng, C., Che, Z., Liu, Y. (2018). Benchmarking deep learning models on large healthcare datasets, Journal of Biomedical Informatics, 83: 112-134.
  • [100] Davoodi, R., Moradi, M. H. (2018). Mortality prediction in intensive care units (icus) using a deep rule-based fuzzy classifier, Journal of Biomedical Informatics, 79, 48-59.
  • [101] Supratak A. et al. (2016). Survey on feature extraction and applications of biosignals, Editor: Holzinger A., “Machine learning for health informatics”, 161-182, Springer International Publishing AG.
  • [102] Pereira, C. R., Pereira, D. R., Rosa, G. H., Albuquerque, V H. C., Weber, S. A. T., Hook, C., Papa, J. P. (2018). Handwritten assessment through convolutional neural networks: an application to parkinson’s disease identification, Artificial Intelligence in Medicine, 87, 67-77.
  • [103] Wulsin, D. F., Gupta, J. R., Mani, R., Blanco, J. A., Litt, B. (2011). Modeling electroencephalography waveforms with semisupervised deep belief nets: fast classification and anomaly measurement, Journal of Neural Engineering, 8, 3, 036015.
  • [104] Hu, C., Ju, R., Shen, Y., Zhou, P., Li, Q. (2016). Clinical decision support for alzheimer's disease based on deep learning and brain network, 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, 1-6.
  • [105] Pang, S., Yu, Z., Orgun, M.A. (2017). A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images, Computer Methods and Programs in Biomedicine,140, 283-293.