Ni-BW Kaplamalarında W Konsantrasyonun Sertlik ve Aşınma Özelliklerine Etkisi

Bu çalışmada farklı konsantrasyonlarda tungsten (W) kaynağı içeren banyolarda elektrobiriktirme yöntemi ile kaplamalar üretilmiştir. Tungsten kaynağı konsantrasyonu 10, 20 ve 40 g/L’den oluşturulmuştur ve kaplamaların üretiminde kesikli akım yöntemi (PC) tercih edilmiştir. Üretilen kaplamaların yüzey morfolojisi, kaplama kalınlığı, kimyasal analizi taramalı elektron mikroskobu (SEM) ve X-ışını kırınımı (XRD) yöntemi ile karakterize edilmiştir. Mikrosertlik yöntemiyle (Vickers) sertlikleri ölçülmüştür. Son olarak sürtünme katsayısı ve aşınma oranını tespit etmek için aşınma testlerine tabi tutulmuştur. Yapılan çalışmalar sonucunda 20 g/L W kaynağı içeren banyodan elde edilen kaplamanın 859 HV ile en yüksek sertliğe sahip kaplama olduğu görülmüştür. Yine, 20 g/L konsantrasyonlu kaplamada aşınma testi sonrasında en düşük sürtünme katsayısı ve aşınma oranı değerleri görülmüştür.

Effect of W Concentration on Hardness and Wear Properties of Ni-BW Coatings

In this study, coatings were produced at different tungsten (W) sources concentrations in plating baths by the electrodeposition method. The concentration of sodium tungstate was 10, 20, 40 g/L, and the pulse current (PC) method was preferred for prepared of the coatings. The surface morphology, coating thickness, phase analysis of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. The hardness of coatings were measured by the microhardness (Vickers) method. Finally, the coatings were subject to wear tests to determine the coefficient of friction and wear rate. As a result of the studies, it was seen that the coating obtained from the sodium tungstate concentration of 20 g/L had the highest hardness with 859 HV. Wear tests also showed that the lowest friction coefficient and wear rate were seen for coating produced at this concentration.

___

  • Aslan, S., & Duru, E. (2021). Microstructure and Wear Properties of Electrodeposited Ni-B-Al2O3 Composite Coating on Low Carbon Steel at Elevated Temperature. Journal of Materials Engineering and Performance, Ref 8. https://doi.org/10.1007/s11665-021-06290-2
  • Baycik, H. (2002). Ion Nitriding and the Influence of the Properties of the Steel. 19–25.
  • Brooman, E. W. (2000). Corrosion behavior of environmentally acceptable alternatives to cadmium and chromium coatings: Cadmium. Part I. Metal Finishing, 98(4), 42–50. https://doi.org/10.1016/s0026-0576(00)81602-5
  • Delikanlı K, Çalık A, U. H. A. (2003). Sade Karbonlu Bir Çeliğin Borlama Özelliklerinin İncelenmesi. BAÜ Fen Bil. Enst. Derg. (2003), 5(1), 99–110. https://dergipark.org.tr/en/pub/baunfbed/issue/24784/261855
  • Doğan, F., Duru, E., Uysal, M., Akbulut, H., & Aslan, S. (2022). Tribology Study of Pulse Electrodeposited Ni-B-SWCNT Composite Coating. Jom, 74(2), 574–583. https://doi.org/10.1007/s11837-021-05070-6
  • Doğan, F., Uysal, M., Algül, H., Duru, E., Akbulut, H., & Aslan, S. (2020). Optimization of pulsed electro co-deposition for Ni-B-TiN composites and the variation of tribological and corrosion behaviors. Surface and Coatings Technology, 400(June), 126209. https://doi.org/10.1016/j.surfcoat.2020.126209
  • Doğan, F., Uysal, M., Duru, E., Akbulut, H., & Aslan, S. (2020). Pulsed electrodeposition of Ni-B/TiN composites: effect of current density on the structure, mechanical, tribological, and corrosion properties. Journal of Asian Ceramic Societies, 8(4), 1271–1284. https://doi.org/10.1080/21870764.2020.1840704
  • Duru, E., Doğan, F., Uysal, M., Akbulut, H., & Aslan, S. (2021). Fabrication and characterization of graphene oxide reinforced Ni B composite coating by pulsed electrodeposition technique. Diamond and Related Materials, 120(October), 108688. https://doi.org/10.1016/j.diamond.2021.108688
  • Gültekin, D., Duru, E., & Akbulut, H. (2021). Improved wear behaviors of lead-free electroless Ni[sbnd]B and Ni-B/CeO2 composite coatings. Surface and Coatings Technology, 422(July). https://doi.org/10.1016/j.surfcoat.2021.127525
  • Harachai, K., Kothanam, N., Qin, J., Boonyongmaneerat, Y., & Jaroenapibal, P. (2020). Hardness and tribological properties of co-electrodeposited Ni-W-B/B coatings. Surface and Coatings Technology, 402(June), 126313. https://doi.org/10.1016/j.surfcoat.2020.126313
  • Karaoglanli, A. C., & Turk, A. (2017). Isothermal oxidation behavior and kinetics of thermal barrier coatings produced by cold gas dynamic spray technique. Surface and Coatings Technology, 318, 72–81. https://doi.org/10.1016/j.surfcoat.2016.12.021
  • Li, B., Li, H. J., Yao, X. Y., Tian, X. F., Jia, Y. J., & Feng, G. H. (2022). Ablation behavior of (ZrC/SiC)3 alternate coating prepared on sharp leading edge C/C composites by CVD. Journal of Materials Science and Technology, 115, 129–139. https://doi.org/10.1016/j.jmst.2021.10.049
  • Liqun, Z., Qunpeng, Z., & Jianhua, L. (2001). Amorphous nickel-tungsten-boron composite electrodeposits with zirconium oxide particles. Metal Finishing, 99(7), 28–30. https://doi.org/10.1016/S0026-0576(01)81109-0
  • Mukhopadhyay, A., Duari, S., Kumar, T., & Prasanta, B. (2016). Tribological Performance Optimization of Electroless Ni – B Coating under Lubricated Condition using Hybrid Grey Fuzzy Logic. Journal of The Institution of Engineers (India): Series D, 97(2), 215–231. https://doi.org/10.1007/s40033-015-0098-0
  • Nagai, T., Hodouchi, K., & Matsubara, H. (2014). Relationship between film composition and microhardness of electrodeposited Ni-W-B films prepared using a citrate-glycinate bath. Surface and Coatings Technology, 253, 109–114. https://doi.org/10.1016/j.surfcoat.2014.05.022
  • Nemane, V., & Chatterjee, S. (2021). Evaluation of microstructural, mechanical, and tribological characteristics of Ni-B-W-SiC electroless composite coatings involving multi-pass scratch test. Materials Characterization, 180(February), 111414. https://doi.org/10.1016/j.matchar.2021.111414
  • Steffani, C., & Meltzer, M. (1995). Electrodeposited tungsten-nickel-boron: A replacement for hexavalent chromium. http://www.osti.gov/servlets/purl/72974-QMzJhC/webviewable/
  • Topuz, P. (2016). DIN 1.2842 çeliğinin borlanması ile oluşan borür tabakası üzerine borlama sıcaklık ve süresinin etkileri. 1(1), 15–19.
  • Ürdem, Ş., Duru, E., Algül, H., Uysal, M., & Akbulut, H. (2021). Evaluation of high temperature tribological behavior of electroless deposited NiB–Al2O3 coating. Wear, 482–483(June), 203960. https://doi.org/10.1016/j.wear.2021.203960
  • Uysal, M., Algül, H., Duru, E., Kahraman, Y., Alp, A., & Akbulut, H. (2021). Tribological properties of Ni–W–TiO2–GO composites produced by ultrasonically–assisted pulse electro co–deposition. Surface and Coatings Technology, 410(February), 126942. https://doi.org/10.1016/j.surfcoat.2021.126942
  • Vitry, V., Kanta, A. F., & Delaunois, F. (2011). Mechanical and wear characterization of electroless nickel-boron coatings. Surface and Coatings Technology, 206(7), 1879–1885. https://doi.org/10.1016/j.surfcoat.2011.08.008
  • Yang, J., Fu, H., He, Y., Gu, Z., Fu, Y., Ji, J., Zhang, Y., & Zhou, Y. (2022). Investigation on friction and wear performance of volcano-shaped textured PVD coating. Surface and Coatings Technology, 431(September 2021), 128044. https://doi.org/10.1016/j.surfcoat.2021.128044
  • Zhang, H., Wang, J., Li, Q., Chen, S., & Ma, C. (2021). Microstructure and performance of magnetic field assisted, pulse-electrodeposited Ni–TiN thin coatings with various TiN grain sizes. Ceramics International, 47(13), 18532–18539. https://doi.org/10.1016/j.ceramint.2021.03.176