Çöp Döngüsünün Etkili Bileşeni: Poşet Çay Atıkları ve Ni+2 Adsorpsiyonu

Evsel kullanımlar sonucu açığa çıkan yiyecek ve içecek atıklarının çöp döngüsüne atılması yerine geri kazanılması hem çevrenin korunması hem de diğer çevre kirleticilerinin minimizyasyonu için çok büyük bir öneme sahiptir. Bu çalışmada, demlenmiş yeşil (YÇA) ve kırmızı (KÇA) poşet çay atıklarının Ni+2 adsorpsiyon sürecine etkisi araştırılmıştır. Yüzde Ni+2 adsorpsiyon oranının ve adsorpsiyon kapasitesinin tespit edilmesi için temas süresi, YÇA ile KÇA miktarları ve pH gibi çalışma koşullarında kesikli deneylerle gerçekleştirilmiştir. Çalışmada belirlenen parametrelerin adsorpsiyon sürecine etkisi sabit bir karıştırma hızı (150±5 rpm), sıcaklığı (20±2 °C) ve başlangıç Ni+2 konsantrasyonu (100±3 mg/L) altında değerlendirilmiştir. Optimum şartlarda YÇA (adsorbent dozu: 0.5 g/L, pH: 5.25, süre: 15 dakika) ve KÇA (adsorbent dozu: 1.0 g/L, pH: 6.47, süre: 30 dakika) ile sırasıyla yaklaşık %76 ve %62 maksimum Ni+2 giderme verimleri bulunmuştur. Elde edilen deney sonuçlarına göre YÇA ve KÇA’nın maksimum adsorpsiyon kapasiteleri 7.61 ve 6.25 mg/g olarak hesaplanmıştır. Bu çalışmada YÇA ve KÇA’nın, Ni+2 giderimi için adsorbent olarak kullanılmaları diğer adsorbent türlerine göre çevre dostu, ekonomik, kolay temin edilebilir birer seçim olduklarını ortaya koymuştur.

Effective Component of the Garbage Cycle: Teabag Waste and Ni+2 Adsorption

Recycling of food and beverage wastes that are released as a result of domestic use instead of throwing them into the garbage cycle is of great importance both for the protection of the environment and the minimization of other environmental pollutants. In this study, the effect of brewed green (GCA) and red (GCA) tea bag wastes on the Ni+2 adsorption process was investigated. In order to determine the percent Ni+2 adsorption rate and adsorption capacity, batch experiments were carried out under operating conditions such as contact time, LCA and GCA amounts, and pH. The effects of the parameters determined in the study on the adsorption process were evaluated under a constant stirring speed (150±5 rpm), temperature (20±2 °C) and initial Ni+2 concentration (100±3 mg/L). At optimum conditions, approximately 76% and 62% maxima with LCA (adsorbent dose: 0.5 g/L, pH: 5.25, time: 15 minutes) and BCA (adsorbent dose: 1.0 g/L, pH: 6.47, time: 30 minutes), respectively. Ni+2 removal efficiencies were found. According to the test results obtained, the maximum adsorption capacities of LCA and RCA were calculated as 7.61 and 6.25 mg/g. In this study, the use of LCA and GCA as adsorbent for Ni+2 removal revealed that they are environmentally friendly, economical and easily available choices compared to other adsorbent types.

___

  • Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J., & Ismail, A. F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17–38. https://doi.org/10.1016/j.jiec.2019.03.029
  • Aslan, S., Yildiz, S., & Ozturk, M. (2018). Biosorption of Cu2+ and Ni2+ Ions from Aqueous Solutions Using Waste Dried Activated Sludge Biomass. Polish Journal of Chemical Technology, 20(3), 20–28. https://doi.org/10.2478/pjct-2018-0034
  • Aslan, Ş., Yıldız, S., & Öztürk, M. (2021). Biosorption of Cu2+ from synthetic wastewater by tea waste sorbent: kinetics, equilibrium and thermodynamics. Pamukkale University Journal of Engineering Sciences, 27(3), 360–368. https://doi.org/10.5505/pajes.2020.27374
  • Bartczak, P., Norman, M., Klapiszewski, Ł., Karwańska, N., Kawalec, M., Baczyńska, M., Wysokowski, M., Zdarta, J., Ciesielczyk, F., & Jesionowski, T. (2018). Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arabian Journal of Chemistry, 11(8), 1209–1222. https://doi.org/10.1016/j.arabjc.2015.07.018
  • Bashir, A., Malik, L. A., Ahad, S., Manzoor, T., Bhat, M. A., Dar, G. N., & Pandith, A. H. (2019). Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environmental Chemistry Letters, 17(2), 729–754. https://doi.org/10.1007/s10311-018-00828-y
  • Bolisetty, S., Peydayesh, M., & Mezzenga, R. (2019). Sustainable technologies for water purification from heavy metals: review and analysis. Chemical Society Reviews, 48(2), 463–487. https://doi.org/10.1039/c8cs00493e
  • Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034
  • Çelebi, H. (2020). Recovery of detox tea wastes: Usage as a lignocellulosic adsorbent in Cr6+ adsorption. Journal of Environmental Chemical Engineering, 8(5), 104310. https://doi.org/10.1016/j.jece.2020.104310
  • Çelebi, H., Gök, G., & Gök, O. (2020). Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions. Scientific Reports, 10(1), 17570. https://doi.org/10.1038/s41598-020-74553-4
  • Chandra Joshi, N., Sharma, R., & Singh, A. (2017). Biosorption: A Review on Heavy Metal Toxicity and Advances of Biosorption on Conventional Methods. Journal of Chemistry and Chemical Sciences, 7(9), 714–724. www.chemistry-journal.org
  • Chouchane, T., Khireddine, O., & Boukari, A. (2021). Kinetic studies of Ni(II) ions adsorption from aqueous solutions using the blast furnace slag (BF slag). Journal of Engineering and Applied Science, 68(1), 34. https://doi.org/10.1186/s44147-021-00039-3
  • Do, Q. C., Choi, S., Kim, H., & Kang, S. (2019). Adsorption of lead and nickel on to expanded graphite decorated with manganese oxide nanoparticles. Applied Sciences, 9(24), 5375. https://doi.org/10.3390/app9245375
  • Esvandi, Z., Foroutan, R., Mirjalili, M., Sorial, G. A., & Ramavandi, B. (2019). Physicochemical Behavior of Penaeuse semisulcatuse Chitin for Pb and Cd Removal from Aqueous Environment. Journal of Polymers and the Environment, 27(2), 263–274. https://doi.org/10.1007/s10924-018-1345-x
  • Foroutan, R., Peighambardoust, S. J., Ahmadi, A., Akbari, A., Farjadfard, S., & Ramavandi, B. (2021). Adsorption mercury, cobalt, and nickel with a reclaimable and magnetic composite of hydroxyapatite/Fe3O4/polydopamine. Journal of Environmental Chemical Engineering, 9(4), 105709. https://doi.org/10.1016/j.jece.2021.105709
  • Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International Journal of Environmental Research and Public Health, 17(3), 679. https://doi.org/10.3390/ijerph17030679
  • Ghorbel-Abid, I., & Trabelsi-Ayadi, M. (2015). Competitive adsorption of heavy metals on local landfill clay. Arabian Journal of Chemistry, 8(1), 25–31. https://doi.org/10.1016/j.arabjc.2011.02.030
  • Güler, İ., Gürel, L., Bahadır, T., & Büyükgüngör, H. (2007). Biosorption of nickel(II) ions from aqueous solutions by rhi- zopus arrhizus attached on rice bran. Journal of Biotechnology, 131S, S79. https://doi.org/10.1016/j.jbiotec.2007.07.137
  • Guo, S., Kumar Awasthi, M., Wang, Y., & Xu, P. (2021). Current understanding in conversion and application of tea waste biomass: A review. Bioresource Technology, 338, 125530. https://doi.org/10.1016/j.biortech.2021.125530
  • Han, C., Wang, M., Ren, Y., Zhang, L., Ji, Y., Zhu, W., Song, Y., & He, J. (2021). Characterization of pruned tea branch biochar and the mechanisms underlying its adsorption for cadmium in aqueous solution. RSC Advances, 11(43), 26832–26843. https://doi.org/10.1039/d1ra04235a
  • Jakhrani, S. H., Ryou, J. S., Atta-ur-Rehman, Jeon, I. K., Woo, B. H., & Kim, H. G. (2019). Prevention of autogenous shrinkage in high-strength mortars with saturated tea waste particles. Materials, 12(7), 2654. https://doi.org/10.3390/ma12172654
  • Kamatchi, C., Arivoli, S., & Prabakaran, R. (2022). Thermodynamic, Kinetic, Batch Adsorption and Isotherm Models for the Adsorption of Nickel from an Artificial Solution Using Chloroxylon Swietenia Activated Carbon. Phys. Chem. Res, 10(3), 315–324. https://doi.org/10.22036/PCR.2021.300561.1956
  • Koçyigit, H., & Sahin, B. (2018). Effects of egg shells for lead ions removal from aqueous solution. Desalınatıon and Water Treatment, 127, 97–103. https://doi.org/10.5004/dwt.2018.22659
  • Lim, S. F., & Lee, A. Y. W. (2015). Kinetic study on removal of heavy metal ions from aqueous solution by using soil. Environmental Science and Pollution Research, 22(13), 10144–10158. https://doi.org/10.1007/s11356-015-4203-6
  • Malakahmad, A., Tan, S., & Yavari, S. (2016). Valorization of Wasted Black Tea as a Low-Cost Adsorbent for Nickel and Zinc Removal from Aqueous Solution. Journal of Chemistry, 2016, 5680983. https://doi.org/10.1155/2016/5680983
  • Öztürk, M., Yıldız, S., & Aslan, Ş. (2020). Nikel(II) İyonlarının Atık Çay’a Biyosorpsiyonu: Denge, Kinetik ve Termodinamik Çalışmaları. Mühendislik Bilimleri ve Tasarım Dergisi, 8(4), 985–998. https://doi.org/10.21923/jesd.742918
  • Rao, R. A. K., & Kashifuddin, M. (2016). Adsorption studies of Cd(II) on ball clay: Comparison with other natural clays. Arabian Journal of Chemistry, 9, S1233–S1241. https://doi.org/10.1016/j.arabjc.2012.01.010
  • Reinoso-Guerra, E., Aristizabal, J., Arce, B., Zurob, E., Dennett, G., Fuentes, R., Suescún, A. V., Cárdenas, L., Rodrigues Da Cunha, T. H., Cabezas, R., García-Herrera, C., & Parra, C. (2021). Nanostructured Didymosphenia geminata-based membrane for efficient lead adsorption from aqueous solution. Journal of Environmental Chemical Engineering, 9(4), 105269. https://doi.org/10.1016/j.jece.2021.105269
  • Shafiee, M., Foroutan, R., Fouladi, K., Ahmadlouydarab, M., Ramavandi, B., & Sahebi, S. (2019). Application of oak powder/Fe3O4 magnetic composite in toxic metals removal from aqueous solutions. Advanced Powder Technology, 30(3), 544–554. https://doi.org/10.1016/j.apt.2018.12.006
  • Shah, J., Jan, M. R., Ul Haq, A., & Zeeshan, M. (2015). Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II) from aqueous solution using formaldehyde treated waste tea leaves. Journal of Saudi Chemical Society, 19(3), 301–310. https://doi.org/10.1016/j.jscs.2012.04.004
  • Shen, Z., Zhang, Y., McMillan, O., Jin, F., & Al-Tabbaa, A. (2017). Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environmental Science and Pollution Research, 24(14), 12809–12819. https://doi.org/10.1007/s11356-017-8847-2
  • Siddiqui, M. N., Ali, I., Asim, M., & Chanbasha, B. (2020). Quick removal of nickel metal ions in water using asphalt-based porous carbon. Journal of Molecular Liquids, 308, 113078. https://doi.org/10.1016/j.molliq.2020.113078
  • Sishi, M., Muller, M., de Beer, D., van der Rijst, M., & Joubert, E. (2019). Rooibos agro-processing waste as herbal tea products: optimisation of soluble solids extraction from dust and application to improve sensory profile, colour and flavonoid content of stem infusions. Journal of the Science of Food and Agriculture, 99(7), 3653–3661. https://doi.org/10.1002/jsfa.9587
  • Tejada-Tovar, C., Villabona-Ortíz, Á., Sierra-Ardila, C., Meza-Acuña, M., & Ortega-Toro, R. (2021). Adsorption in a binary system of Pb (II) and Ni (II) using lemon peels. Revista Facultad de Ingenieria101, 31–44. https://doi.org/10.17533/udea.redin.20200691
  • Ukanwa, K. S., Patchigolla, K., Sakrabani, R., Anthony, E., & Mandavgane, S. (2019). A review of chemicals to produce activated carbon from agricultural waste biomass. Sustainability, 11(22), 6204. https://doi.org/10.3390/su11226204
  • USEPA. (2019). National Primary Drinking Water Regulations. United States Environmental Protection Agency. Washington, DC. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations
  • Vakili, M., Rafatullah, M., Yuan, J., Zwain, H. M., Mojiri, A., Gholami, Z., Gholami, F., Wang, W., Giwa, A. S., Yu, Y., Cagnetta, G., & Yu, G. (2021). Nickel ion removal from aqueous solutions through the adsorption process: A review. Reviews in Chemical Engineering, 37(6), 755–778. https://doi.org/10.1515/revce-2019-0047
  • Vilela, A., & Pinto, T. (2019). Grape Infusions: The Flavor of Grapes and Health-Promoting Compounds in Your Tea Cup. Beverages, 5(3), 48. https://doi.org/10.3390/beverages5030048
  • WHO. (2017). Guidelines for Drinking-water Quality Fourth Edition Incorporating The First Addendum.
  • Wołowicz, A., & Wawrzkiewicz, M. (2021). Screening of ion exchange resins for hazardous Ni(II) removal from aqueous solutions: Kinetic and equilibrium batch adsorption method. Processes, 9(2), 1–24. https://doi.org/10.3390/pr9020285
  • Yadav, S., Yadav, A., Bagotia, N., Sharma, A. K., & Kumar, S. (2021). Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater - A review. Journal of Water Process Engineering, 42, 102148. https://doi.org/10.1016/j.jwpe.2021.102148
  • Yang, S., Wu, Y., Aierken, A., Zhang, M., Fang, P., Fan, Y., & Ming, Z. (2016). Mono/competitive adsorption of Arsenic(III) and Nickel(II) using modified green tea waste. Journal of the Taiwan Institute of Chemical Engineers, 60, 213–221. https://doi.org/10.1016/j.jtice.2015.07.007
  • Yildiz, S. (2018). Artificial neural network approach for modeling of Ni(II) adsorption from aqueous solution by peanut shell. Ecological Chemistry and Engineering S, 25(4), 581–604. https://doi.org/10.1515/eces-2018-0039
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç