Nanopartiküllerde viskozitenin ısı transferine etkisi

Araştırmamızda, güneş enerjisi sistemlerinde ve hatta termal sistemlerde endüstriyel alanlarda Nano-akışkanların çeşitli kullanım alanlarının olduğu sonucuna varılmıştır. Nano-akışkanlardaki partiküllerin metrik olmayan boyut olarak indirgenmesi, temel akışkanlarda yüz nanometre arasında değişmektedir. Bu çalışmada Nano-akışkanların soğutma veya soğutma ve hatta ısıtmada kullanımı ve kullanım alanları araştırılmıştır. Yapılan araştırmalar sonucunda ısıl iletkenliğin veriminin Nano-akışkanların farklılıklarından farklı açılardan etkilendiğini tespit edilmiştir.

Effect of viscosity on heat transfer in nanoparticles

In our research, it has been concluded that there are various utilizing areas for Nano-fluids in industrial fields in solar energy systems and even thermal systems. The demotion of the particles in Nano-fluids as nonmetric size should vary between one to one hundred nanometers in the basic fluids. In this work, Nano-fluids usage in cooling or chilling and even heating and their usage districts were explored. Due to the researches, we identified that thermal conductivity’s efficiency affects of the differences of the Nano-fluids with different aspects.

___

  • Dinsmore, A. D., Hsu, M. F., Nikolaides, M. G., Marquez, M., Bausch, A. R., and Weitz, D. A., "Colloidosomes: selectively permeable capsules composed of colloidal particles", Science, 298 (5595): 1006–1009 (2002).
  • Kim, S.-H., Yi, G.-R., Kim, K. H., and Yang, S.-M., "Photocurable Pickering emulsion for colloidal particles with structural complexity", Langmuir, 24 (6): 2365–2371 (2008).
  • Choi, S. U. S. and Eastman, J. A., "Enhancing thermal conductivity of fluids with nanoparticles", Argonne National Lab., IL (United States), (1995).
  • Qiu, L., Zou, H., Tang, D., Wen, D., Feng, Y., and Zhang, X., "Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators", Applied Thermal Engineering, 130: 1004–1011 (2018).
  • Vukovic, I., ten Brinke, G., and Loos, K., "Block copolymer template-directed synthesis of well-ordered metallic nanostructures", Polymer, 54 (11): 2591–2605 (2013).
  • Mariscal, M. M., Olmos-Asar, J. A., Gutierrez-Wing, C., Mayoral, A., and Yacaman, M. J., "On the atomic structure of thiol-protected gold nanoparticles: a combined experimental and theoretical study", Physical Chemistry Chemical Physics, 12 (37): 11785–11790 (2010).
  • Yonezawa, T., "Preparation of metal nanoparticles and their application for materials", Nanoparticle Technology Handbook, Elsevier, 829–837 (2018).
  • Qiu, L., Zhu, N., Feng, Y., Michaelides, E. E., Żyła, G., Jing, D., Zhang, X., Norris, P. M., Markides, C. N., and Mahian, O., "A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids", Physics Reports, 843: 1–81 (2020).
  • Tawfik, M. M., "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review", Renewable And Sustainable Energy Reviews, 75: 1239–1253 (2017).
  • Qiu, L., Zou, H., Wang, X., Feng, Y., Zhang, X., Zhao, J., Zhang, X., and Li, Q., "Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity", Carbon, 141: 497–505 (2019).
  • Tekir, M., Taskesen, E., Aksu, B., Gedik, E., and Arslan, K., "Comparison of bi-directional multi-wave alternating magnetic field effect on ferromagnetic nanofluid flow in a circular pipe under laminar flow conditions", Applied Thermal Engineering, 179: 115624 (2020).
  • Yang, L., Xu, J., Du, K., and Zhang, X., "Recent developments on viscosity and thermal conductivity of nanofluids", Powder Technology, 317: 348–369 (2017).
  • Yang, L., Du, K., Bao, S., and Wu, Y., "Investigations of selection of nanofluid applied to the ammonia absorption refrigeration system", International Journal Of Refrigeration, 35 (8): 2248–2260 (2012).
  • Babar, H., Sajid, M. U., and Ali, H. M., "Viscosity of hybrid nanofluids: a critical review", Thermal Science, 23 (3 Part B): 1713–1754 (2019). Ali, H. M., Babar, H., Shah, T. R., Sajid, M. U., Qasim, M. A., and Javed, S., "Preparation techniques of TiO2 nanofluids and challenges: a review", Applied Sciences, 8 (4): 587 (2018).
  • Tamim, H., Dinarvand, S., Hosseini, R., Rahimi, H., and Pop, I., "Steady laminar mixed convection stagnation-point flow of a nanofluid over a vertical permeable surface in the presence of a magnetic field", Journal Of Applied Mechanics And Technical Physics, 57 (6): 1031–1041 (2016).
  • Dinarvand, S., Hosseini, R., and Pop, I., "Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model", International Journal Of Numerical Methods For Heat & Fluid Flow, (2016).
  • Alawi, O. A., Sidik, N. A. C., Xian, H. W., Kean, T. H., and Kazi, S. N., "Thermal conductivity and viscosity models of metallic oxides nanofluids", International Journal Of Heat And Mass Transfer, 116: 1314–1325 (2018).
  • Abdullah, A. M., Chowdhury, A. R., Yang, Y., Vasquez, H., Moore, H. J., Parsons, J. G., Lozano, K., Gutierrez, J. J., Martirosyan, K. S., and Uddin, M. J., "Tailoring the viscosity of water and ethylene glycol based TiO2 nanofluids", Journal Of Molecular Liquids, 297: 111982 (2020).