N-3 HUFA’ca zenginleştirilmiş Artemia ile beslenen Yeşil kaplankaridesi (Penaeus semisulcatus) larvalarının büyüme performansı

Artemia zenginleştirmesinin karides larvaları üzerindeki etkileri konusunda önemli miktarda çalışmalar yapılmıştır. Penaeidkarideslerin, yüksek oranda doymamış yağ asitlerinin (n-3 HUFA) sentezlemede sınırlı bir yeteneğine sahip olduğu iyi bilinmektedir.Bu çalışma, deneylerde yeşil kaplan karidesi (Penaeus semisulcatus) larva kültürü sırasında yüksek oranda n-3 HUFA ilezenginleştirilen Artemianın büyüme ve hayatta kalma üzerine etkilerini araştırmak için yapılmıştır. Mysis I'den postlarvalara (PL9) onbir güne kadar P. semiculcatus larvalarının zenginleştirilmemiş Artemia (WE) ve yüksek seviyelerde n-3 HUFA içeren bir emülsiyon(SELC) ile zenginleştirilmiş Artemialar (Artemia nauplii) ile beslenerek büyüme performansları ve hayatta kalma oranlarıaraştırılmıştır. Deneme sonunda, zenginleştirilmiş Artemia'da daha yüksek n-3 HUFA, özellikle 20:5n-3 ve 22:6n-3 seviyeleribulunmuştur. M1'den PL1'e veya PL9'a büyütülen larvalar, SELC tedavilerinde daha yüksek yaşama oranı (PL1'de %93.20 veyaPL7'de %79.13) göstermiştir. PL1'deki toplam uzunluk (TL) (sırasıyla 5.33-5.34 mm TL) gruplar arasında anlamlı farklılıkgöstermemiştir. Ancak, son toplam PL9 uzunluğu SELC'de (9.25 mm / gün TL) WE'den (8.97 mm / gün TL) önemli ölçüde dahayüksek bulunmuştur. Larva yetiştiriciliği sırasında n-3 HUFA'nın takviyesi, postlarvalarda P. semisulcatus'un yaşama toleransınıarttırmış, 12 gün sonra büyüme performansını olumlu yönde etkilemiştir. N-3 HUFA ile zenginleştirilmiş Artemia, büyüme oranınıolumlu yönde etkileyebilir ve P. semisulcatus'un erken aşamalarının toplam uzunluğunu ve hayatta kalmasını etkili bir şekildeartırabilir. Ek olarak, sonuçlar karma yemlere geçmeden önce n-3 HUFA ile zenginleştirilmiş Artemia kullanmanın büyümeperformansının yanı sıra çevresel etkiler üzerinde de etkili olabileceğini göstermiştir. Bu durum, entansif kuluçkahaneler için açık birpotansiyel uygulama olarak kabul edilmektedir. Larvaların geçiş aşamasında çok karşılaşılan hayatta kalma problemleri içinkullanılması önerilmektedir.

The Effect of Enriched Artemia of N-3 HUFA on the growth performance of Green tiger shrimp (Penaeus semisulcatus) larvae

shrimps have a limited ability to synthesize highly unsaturated fatty acids (n-3 HUFA). This study was carried out to investigate theeffects of enrichment artemia with n-3 HUFA on growth and survival during the larval culturing of Penaeus semisulcatus inexperiments. P. semisulcatus larvea from Mysis I to eleven days postlarvae (PL9) were fed without Artemia-enriched (Artemianauplii) (WE) and an emulsion containing high levels of n-3 HUFA (SELC). In the end of the experiment, higher levels of n-3 HUFA,especially 20:5n-3 and 22:6n-3, were found in the enriched Artemia. The larvae grown from M1 to PL1 or to PL9 displayed higher survival (93.20% at PL1 or 79.13% at PL9) in SELC treatments. The total length (TL) at PL1 (5.33–5.34 mm TL, respectively) didnot significantly differences between groups. However, final total length of PL9 was significantly higher in SELC (9.25 mm/day TL)than in WE (8.97 mm/day TL). Supplementation of n-3 HUFA during larviculture increases the survival tolerance of P. semisulcatus in postlarvae, positively affects growth performance after 12 days. N-3 HUFA enriched Artemia can positively affect growth rate andeffectively improve the total length and survival of the early stages of P. semisulcatus. In addition, the results showed better effects ongrowth performance and environmental effects using Artemia enriched before switching to this type of mixed feed. This is consideredto be an obvious potential application for intensive hatcheries. This is considered to be a clear potential application for intensivehatcheries. It is recommended to use the larvae for survival problems that are frequently encountered during the transition phase.

___

  • Agh, N., & Sorgeloos, P. (2005). Handbook of protocols and guidelines for culture and enrichment of live food for use in larviculture. Urmia-Iran: Ediciones Artemia & Aquatic Animals Research Center, 60.
  • Bell, M. V., Henderson, R. J., & Sargent, J. R. (1986). The role of polyunsaturated fatty acids in fish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 83(4), 711-719.
  • Cavalli, R. O., Berghe, E. V., Lavens, P., Thuy, N. T., Wille, M., & Sorgeloos, P. (2000). Ammonia toxicity as a criterion for the evaluation of larval quality in the prawn Macrobrachium rosenbergii. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 125(3), 333-343.
  • Chim, L., Lemaire, P., Delaporte, M., Le Moullac, G., Galois, R., & Martin, J. L. M. (2001). Could a diet enriched with n‐3 highly unsaturated fatty acids be considered a promising way to enhance the immune defences and the resistance of Penaeid prawns to environmental stress?. Aquaculture research, 32(2), 91-94.
  • Cobo, M. D. L., Wouters, R., Wille, M., Sonnenholzner, S., & Sorgeloos, P. (2015). Evaluation of frozen Umbrella‐stage Artemia as first animal live food for Litopenaeus vannamei (Boone) larvae. Aquaculture Research, 46(9), 2166-2173.
  • Dhert, P., P. Lavens & P. Sorgeloos. (1992). Stress evaluation: a tool for quality control of hatchery- produced shrimp and fish fry. Aquacult. Europe, 17: 6- 10.
  • FAO (2016) Food and Agriculture Organization of the United Nations. Rome
  • Figueiredo, J., R. Van Woesik & J. Lin. (2009). Artemia franciscana enrichment model- How to keep them small, rich and alive. Aquaculture, 294: 212-220.
  • Immanuel, G., T. Citarasu, V. Sivaram, M.M. Babu & A. Palavesam. (2007). Delivery of HUFA, probionts and biomedicine through bioencapsulated Artemia as a means to enhance the growth and survival and reduce the pathogenesity in shrimp Penaeus monodon postlarvae. Aquacult. Int., 15: 137-152.
  • Jinbo, T., Dan, S., Nakaya, M., Ashidate, M., & Hamasaki, K. (2013). Effects of n-3 highly unsaturated fatty acid content in Artemia on survival and development of laboratory-reared horsehair crab Erimacrus isenbeckii larvae. Fisheries science, 79(3), 459-467.
  • Jones, D. A., Kamarudin, M. S., & Vay, L. L. (1993). The potential for replacement of live feeds in larval culture. Journal of the world Aquaculture Society, 24(2), 199-210.
  • Kanazawa A, Teshima SI, Sakamoto M (1985) Effects of dietary lipids, fatty acids, and phospholipids on growth and survival of prawn (Penaeus japonicus) larvae. Aquaculture 50(1– 2):39–49. https://doi.org/10.1016/0044-8486(85)90151-6
  • Kanazawa, A., Teshima, S., Ono, K., (1979a). Relationship between essential fatty acid requirements of aquatic animals and capacity of bioconversion of linolenic acid to highly unsaturated fatty acid. Comp. Biochem. Physiol. B, 63:295- 298.
  • Kanazawa, A., Teshima, S., Ono. K., Chalayodeja, K., (1979b). Biosynthesis of fatty acids from acetate in the prawn, Penaeus monodon and Penaeus merguiensis. Mem. Fac. Fish. Kagoshima Univ., 28: 21-26.
  • Kumlu, M. (1999). Feeding and digestion in larval decapod crustaceans. Turkish Journal of Biology, 23(2), 215-230.
  • Lavens, P. & P. Sorgeloos. (1996). Manual on the produc- tion and use of live food for aquaculture. FAO, Rome, 295 pp.
  • Lèger, P. & P. Sorgeloos. (1992). Optimized feeding regimes in shrimp hatcheries. In: A.W. Fast & J.L. Lester (eds.). Marine shrimp culture: principles and practices. Elsevier, Amsterdam, pp. 225-244.
  • Lèger Ph, Bengston DA, Simpson KL, Sorgeloos P (1986) The use and nutritional value of Artemia as a food source. Oceanogr Mar Biol Annu Rev 24:521–623
  • Martins, T.G., R.O. Cavalli, R.C. Martino, C.E.M. Rezende & W. Wasielesky Jr. (2006). Larviculture output and stress tolerance of Farfantepenaeus paulensis postlarvae fed Artemia containing different fatty acids. Aquaculture, 252: 525-533.
  • Metcalfe, A.P. & A.A. Schmitz. 1961. The rapid preparation of fatty acids for gas chromatographic analysis. Anal. Chem., 33: 363-364.
  • Mutti, D.W., Ballester, E.L.C., Wasielesky Jr., R.C.M.W., Cavalli, R.O., (2017). Feeding n-3 HUFA enriched Artemia to the larvae of the pink shrimp Farfantepenaeus paulensis increases stress tolerance and subsequent growth. Lat. Am. J. Aquat. Res., 45(1): 18-24
  • Palacios, E. & I.S. Racotta. (2007). Salinity stress test and its relation to future performance and different physiological responses in shrimp postlarvae. Aquaculture, 268: 123-135.
  • Rees, J.F., Cure, K., Piyatirattivorakul, S., Sorgeloos, P., Menasveta, P., 1994. Highly unsaturated fatty acid requirements of Penaeus monodon postlarvae: an experimental approach based on Artemia enrichment. Aquaculture, 122: 193-207.
  • Sorgeloos, P., Coutteau, P., Dhert, P., Merchie, G., & Lavens, P. (1998). Use of brine shrimp, Artemia spp., in larval crustacean nutrition: a review. Reviews in fisheries science, 6(1-2), 55-68.
  • Sui, L., Wille, M., Cheng, Y., & Sorgeloos, P. (2007). The effect of dietary n-3 HUFA levels and DHA/EPA ratios on growth, survival and osmotic stress tolerance of Chinese mitten crab Eriocheir sinensis larvae. Aquaculture, 273(1), 139-150.
  • Tackaert, W., Abelin, P., Leger, P. H., & Sorgeloos, P. (1989). Stress resistance as a criterium to evaluate quality of postlarval shrimp reared under different feeding procedures: 393-403. In III Simposio Brasileiro Sobre Cultivo de Camarao (pp. 393-403). MCR Aquacultura.Van Stappen 1996
  • Wouters, R., Cobo Barcia, M. D. L., Dhont, J., & Wille, M. (2009). Developments in feed formulations, feeding practices and culture techniques for marine shrimp larvae. In WAS Special session on Sustainable Shrimp (pp. 79-91). World Aquaculture Society (WAS).