Moleküler Baskılı Polimerler ile Modifiye Edilmiş Karbon Pasta Elektrotlarla Thiuramın Voltametrik Tayini

Spesifik tanıma özelliği bakımından molekül baskılama tekniği, üç boyutlu polimerik malzemelerin hazırlanmasında önemli bir araçhaline gelmiştir. Üç boyutlu olarak çapraz bağlanmış polimerik malzemeler, kalıp molekülünün bulunduğu ortamdaki fonksiyonelmonomerlerin polimerizasyonu ile elde edilirler. Daha sonra, uygun sökme prosedürüyle kalıp molekülünün şekil, boyut vefonksiyonel gruplarına ait tamamlayıcı tanıma bölgeleri oluşturulur. Böylelikle, molekül baskılı polimerler, kalıp moleküle karşıseçici özellik göstermesinin yanı sıra kararlı bir yapıda bulunması, sıcaklığa ve basınca karşı dayanıklı, kimyasallara karşı dirençliolmaları ve tekrar kullanılabilmeleri gibi özelliklerinden dolayı sıklıkla kullanılmaktadır. Günümüzde, moleküler baskılama tekniği,kromatografi, sensör vb. gibi çeşitli analitik tekniklerle başarı bir şekilde birleştirilmiştir.Bu çalışmada, thiuram baskılı mikroküreler sentezlendi ve FT-IR spektroskopisi ve Taramalı Elektron Mikroskobu (SEM) ilekarakterize edildi. Thiuram molekülü baskılanmış polimerlerle modifiye edilmiş olan karbon pasta elektrot (CPE), diferansiyel pulsvoltametrisi (DPV) kullanılarak thiuram etken maddesi içeren pestisit örneğinde thiuram tayini yapılmıştır.

Voltammetric Determination of Thiuram by Carbon Paste Electrodes Modified with Molecular Imprinted Polymers

Molecular imprinting has become a powerful tool for the preparation of three dimensional polymeric materials with special recognition ability. The three dimensionally cross-linked polymeric materials are obtained by polymerization of functional monomers in the presence of template molecule. Then, leaching of template molecules by a leaching procedure generates the recognition cavities complementary to the shape, size and functional groups of the template molecules. Thus, molecularly imprinted polymers are often used because of their stability, their resistance to temperature and pressure, resistance to effects of the chemicals and their re-use, as well as their selective properties against template molecule. Nowadays, molecular imprinting technique has been successfully assembled with a several of analytical techniques in chromatography, sensor etc. In this study, thiuram imprinted microbeads were synthesized and characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). A carbon paste electrode (CPE) was modified with thiuram molecular imprinted polymer (MIP) and used for the determination of thiuram in active substance of pesticide sample by Differential Pulse Voltammetry (DPV)

___

  • Alizadeh, T. 2008. Development of a molecularly imprinted polymer for pyridoxine using an ion-pair as template. Analytica Chimica Acta 623, 101-108.
  • Alizadeh, T. 2010. Preparation of molecularly imprinted polymer containing selective cavities for urea moleculae and its application for urea extraction. Analytica Chimica Acta 669, 94-101.
  • Alizadeh, T., Memarbashi, N. 2012. Evaluation of the facilitated transport capabilities of nano- and micro-sized molecularly imprinted polymers (MIPs) in bulk liquid membrane system. Separation and Purification Technology 90, 83-91.
  • Alizadeh, N., Kalhor, H., Karimi, A. 2015. Determination of thiram residues in carola seeds, water and soil samples using solid-phase microextraction with polypyrrole film followed by ion mobility spectrometer. International Journal of Environmental Analytical Chemistry 95, 57-66.
  • Bayram, E., Yılmaz, E., Uzun, L., Say, R., Denizli, A. 2017. Multiclonal plastic antibodies for selective aflatoxin extraction from food samples. Food Chemistry 221, 829-837.
  • Demirkurt, M., Olcer, Y. A., Demir, M. M., Eroğlu, A. E. 2018. Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Analytica Chimica Acta 1014, 1-9.
  • Eddleston, M., Buckley, N. A., Eyer, P., Dawson, A. H. 2008. Management of acute organophosphorous pesticide poisoning. Lancet 371, 597-607.
  • Gao, S., Zhang, Z., He, L. 2016. Filter-based surface-enhanced Raman spectroscopy for rapid and sensitive detection of the fungicide ferbam in water. International Journal of Environmental Analytical Chemistry 96, 1495-1506.
  • Garcia, R., Carreiro, E. P., Ramalho, J. P. P., Mirao, J., Burke, A. J., Gomes da Silva, M. D. R., Freitas, A. M. C., Cabrita, M. J. 2018. A magnetic controllable tool for the selective enrichment of dimethoate from olive oil samples: A responsive molecular imprinting-based approach. Food Chemistry 254, 309-316.
  • Kang, S., Xu, Y., Zhou, L., Pan, C. 2012. Preparation of molecularly imprinted polymers: diethyl(3- methylureido)(phenyl)methylphosphonate as a dummy template for the recognition of its organophosphate pesticide analogs. Journal of Applied Polymer Science 124, 3737-3743.
  • Kitagawa, E., Takahashi, J., Momose, Y., Iwahashi, H. 2002. Effects of the pesticide thiuram:genome-wide screening of indicator genes by yeast DNA microarray. Environmental Science and Technology 36, 3908-3915.
  • Kumar, P., Kim, K. H., Deep, A. 2015. Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosensors Bioelectronics 70, 469-481.
  • Li, Y., Liu, J., Zhang, Y., Gu, M., Wang, D., Dang, Y. Y., Ye, B. C., Li, Y. 2018. A robust electrochemical sensing platform using carbon paste electrode modified with molecularly imprinted microsphere and its application on methyl parathion detection. Biosensors and Bioelectronics 106, 71-77.
  • Long, E. Y., Krupke, C. H. 2016. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nature Communications 7, 11629.
  • Miller, J. N., Miller, J. C., 2010. Statistic and chemometrics for analytical chemistry. Pearson Education Limited, (6th edition) 278s, England.
  • Muti, M., Soysal, M., Nacak, F. M., Gençdağ, K., Karagözler, A. E. 2015. A novel DNA probe based on molecularly imprinted polymer modified electrode for the electrochemical monitoring of DNA. Electroanalysis 27, 1368-1377.
  • Orozco, J., Cortes, A., Cheng, G., Sattayasamitsathit, S., Gao, W., Feng, X., Shen, Y., Wang, J. 2013. Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. Journal of the American Chemistry Society 135(14), 5336-5339.
  • Ou, S. H., Pan, L. S., Jow, J. J., Chen, H. R., Ling, T. R. 2018. Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of D and L phenylalanine. Biosensors and Bioelectronics 105, 143-150.
  • Pundir, C. S., Chauhan, N. 2012. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Analytical Biochemistry 429:19-31.
  • Songa, E. A., Okonkwo, J. O. 2016. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorous pesticides: A review. Talanta 155:289-304.
  • Soysal, M., Muti, M., Esen, C., Gençdağ, K., Aslan, A., Erdem, K. A., Karagözler, A. E. 2013. A novel and selective methylene blue imprinted polymer modified carbon paste electrode. Electroanalysis 25(5), 1278-1285.
  • Stankovic, D. M., Kalcher, K. 2016. Amperometric quantification of the pesticide ziram at boron doped diamond electrodes using flow injection analysis. Sensors and Actuators B:Chemical 233, 144-147.
  • Szabela, D. A., Duda, Z. R., Lisowska, Z., Wolf, W. M. 2017. Heavy metal uptake by Herbs. V. metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water, Air, Soil Pollution 228, 334-348.
  • Tang, Z. G., Liu, C. B., Wang, J., Li, H. M., Ji, Y. Wang, G. H. Lu, C. 2016. Preparation and characterization of monodisperse molecularly imprinted polymers for the recognition and enrichment of oleanolic acid. Journal of Separation Science 39, 1592-1602.
  • Xia, N., Wang, Q. L., Liu, L. 2018. Nanomaterials-based optical techniques for the detection of acetylcholinesterase and pesticides. Sensors 15, 499-514.
  • Xu, Y., Tang, Y., Zhao, Y., Gao, R., Zhang, J., Fu, D., Li, Z., Li, H., Tang, X. 2018. Bifunctional monomer magnetic imprinted nanomaterials for selective separation of tetracyclines directly from milk samples. Journal of Colloid and Interface Science 515, 18-26.
  • Yan, X., Li, H., Su, X. 2018. Review of Optical Sensors for Pesticides. Trends in Analytical Chemistry 103, 1-20. Zhang, W. Y., Asiri, A. M., Liu, D. L., Du, D., Lin, Y. H. 2017.
  • Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorous pesticides and nerve agents. Trends in Analytical Chemistry 54, 1-10.
  • Zhang, X., Yarman, A., Erdossy, J., Katz, S., Zebger, I., Jetzschmann, K. J., Altıntaş, Z., Wollenberger, U., Gyurcsanyi, R. E., Scheller, F. W. 2018. Electrosynthesized MIPs for transferrin: Plastibodies or nao-filters?. Biosensors and Bioelectronics 105, 29-35.