Merkezi İşlem Biriminde Elektromanyetik Dalga Yayılımı Davranışı

Bu çalışmada, izotropik katmanlara sahip merkezi işlem birimlerinde elektromanyetik dalga yayılımı davranışı incelenmektedir. Ayrıca, merkezi işlem birimlerinin katmanlı yapılarının ve katmanların malzeme özelliği parametrelerinin enine elektrik (TE) ve enine manyetik (TM) modlar için elde edilen alan dağılımları üzerindeki etkileri araştırılmaktadır.

The Behaviour of Electromagnetic Wave Propagation in a Central Processing Unit

In this study, the behavior of electromagnetic wave propagation in central processing units with isotropic layers is investigated. In addition, the effects of the central processing units’ layered structures and the material property parameters of the layers on the field distributions obtained for the transverse electric (TE) and transverse magnetic (TM) modes are examined.

___

  • Basmaci, A.N. (2020). Characteristics of electromagnetic wave propagation in a segmented photonic waveguide. Journal of Optoelectronics and Advanced Materials, 22, 452-460.
  • Bouras, M., Mezhoud, M., & Hocini, A. (2018). Efficient magneto-optical TE/TM mode converter in a hybrid structure made with a SiO2/ZrO2 coated on an ion-exchanged glass waveguide. Optik, 157, 658-666. https://doi.org/10.1016/j.ijleo.2017.11.169
  • Cho, J., Park, M.-S., & Jung, K.-Y. (2020). Perfectly matched layer for accurate FDTD for anisotropic magnetized plasma. Journal of Electromagnetic Engineering and Science, 20(4), 277-284. https://doi.org/10.26866/jees.2020.20.4.277
  • Duman, Ç., & Kaburcuk, F. (2019). A numerical study of ZnO random lasers using FDTD method. Optik, 181, 993-999. http://dx.doi.org/10.1016/j.ijleo.2018.12.136
  • El Haddad, A. (2016). Exact analytical solution for the electromagnetic wave propagation in a photonic band gabs material with sinusoidal periodicity of dielectric permittivity. Optik, 127, 1627-1629. http://dx.doi.org/10.1016/j.ijleo.2015.11.049
  • Hirani, R.R., Pathak, S.K., Shah, S.N., & Sharma D.K. (2018). Dispersion characteristics of dielectric tube waveguide loaded with plasma for leaky wave antenna application. International Journal of Electronics and Communications (AEÜ), 83, 123-130. http://dx.doi.org/10.1016/j.aeue.2017.08.019
  • Johnson, S.G., Oskooi, A. & Taflove, A. (2013). Advances in FDTD Computational Electrodynamics Photonics and Nanotechnology, Artech House, UK.
  • Kaburcuk, F., & Elsherbeni, A.Z. (2018). Temperature rise and SAR distribution at wide range of frequencies in a human head due to an antenna radiation. The Applied Computational Electromagnetics Society, 33(4), 367-372.
  • Lwin, Z.M., & Yokota, M. (2019). Numerical analysis of SAR and temperature distribution in two dimensional human head model based on FDTD parameters and the polarization of electromagnetic wave. International Journal of Electronics and Communications (AEÜ), 104, 91-98. https://doi.org/10.1016/j.aeue.2019.03.010
  • Mitri, F.G. (2020). Optimal TM TE mode conversion contribution to the radiation force on a cylinder exhibiting rotary polarization in circular polarized light. Journal of Quantitative Spectroscopy & Radiative Transfer, 253, 107115. https://doi.org/10.1016/j.jqsrt.2020.107115
  • Panyaev, I., Zolotovskii, I., & Dmitry, S. (2020). Laser generation and amplication of TE and TM modes in a semiconductor optical GaAs waveguide with distributed feedback generated by a space charge wave. Optics Communications, 459, 125026. https://doi.org/10.1016/j.optcom.2019.125026
  • Pozar, D.M. (2012). Microwave Engineering 4th Edition, John Wiley & Sons, Inc. Amherst, Massachussetts.
  • Soltani, A., Ouerghi, F., Abdelmalek, F., Haxha, S., Ademgil, H., & Akowuah, E.K. (2017). Unidirectional light propagation photonic crystal waveguide incorporating modified defects. Optik, 130, 1370-1376. https://doi.org/10.1016/j.ijleo.2016.11.179
  • Sullivan, D.M. (2000). Electromagnetic Simulation Using The FDTD Method. IEEE Press, New York.
  • Xiong, L.-L, Wang, X.-M. Peng, Z.-Y. & Zhong, S.-Y. (2018). The electromagnetic waves propagation in unmagnetized plasma media using parallelized finite-difference time-domain method. Optik, 166, 8-14. https://doi.org/10.1016/j.ijleo.2018.03.136
  • Yee, K.S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 11(3), 302-307. https://doi.org/10.1109/TAP.1966.1138693
  • Zhang, Y., Cao, L., Shi, D., & Lin, Y. (2021). Multiscale analysis and algorithm of transient electromagnetic scattering from heterogeneous materials. Journal of Computational and Applied Mathematics, 391, 113427. https://doi.org/10.1016/j.cam.2021.113427
  • Zhu, Y., Lu, J., & Li, E. (2011). Electromagnetic compatibility benchmark-modeling approach for a dual-die CPU. IEE Transactions on Electromagnetic Compatibility, 53(1), 91-98. https://doi.org/10.1109/TEMC.2010.2053208