Manyetik Rezonans Kuplaj Yöntemiyle Kablosuz Güç Aktarımı Üzerine Literatür Taraması

Günümüzde mobil elektronik cihazların kullanımının yaygınlaşması, kablosuz şarj teknolojisinin de ilerlemesini beraberinde getirmiştir. Kablosuz güç aktarımı ile bu cihazların kolaylıkla şarj edilmesi kullanışlılık açısından kullanıcılara oldukça geniş bir alan sağlamaktadır. Son zamanlarda popüler çalışma alanlarından biri haline gelen kablosuz güç aktarımında enerji iletim verimliliği en önemli parametrelerdendir. Kablodan kaynaklanan sorunların ortadan kalkmasıyla hareket özgürlüğü ve kullanım kolaylığı gibi avantajları getiren bu konu üzerine özellikle son yıllarda farklı tekniklerle birçok çalışma yapılmıştır. Bu tekniklerden orta mesafede yüksek verimle kablosuz güç aktarımının mümkün kılınmasına olanak sağlayan manyetik rezonans kuplaj yöntemi üzerine bir derleme çalışması sunulmuştur. Bu makalenin kablosuz güç aktarımı konusu üzerine çalışma yapacak araştırmacıların ve bu konuya ilgi duyan okuyucuların, ilgili çalışmalara kolayca ulaşabilecekleri bir rehber niteliğinde olması hedeflenmektedir. Çalışmamızda öncelikle kablosuz güç aktarımının tarihçesi verilip, ardından kablosuz güç aktarımı tekniklerinden manyetik rezonans kuplaj yöntemini öne çıkaran hususlara yer verilmiştir. Daha sonra manyetik rezonans kuplaj yönteminin temel prensibi açıklanmış; maksimum güç transferi, maksimum verimlilik, hizalama problemi ve insan sağlığı üzerine etkilerinden bahsedilmiştir. Son olarak kablosuz güç aktarımında çalışmaların en yoğun olduğu uygulama alanı olan elektrikli araçlar ile tüketici elektroniği, biyomedikal implantlar, insansız hava araçları ve robotlar şeklinde uygulama alanları sınıflandırılıp bu alanlarda yapılan çalışmalara yer verilmiştir.

Literature Review on Wireless Power Transmission by Magnetic Resonance Coupling Method

Today, the widespread use of mobile electronic devices has brought about the advancement of wireless charging technology. Easy charging of these devices with wireless power transfer provides a wide area for users in terms of usability. Energy transmission efficiency is one of the most important parameters in wireless power transmission, which has become one of the popular fields of study recently. Especially in recent years, many studies have been carried out with different techniques on this subject, which brings advantages such as freedom of movement and ease of use by eliminating the problems caused by the cable. A review study on the magnetic resonance coupling method, which enables wireless power transmission with high efficiency at medium distance, is presented. It is aimed that this article will serve as a guide for researchers who will study on wireless power transmission and readers who are interested in this subject, where they can easily access related studies. In our study, firstly, the history of wireless power transfer is given, and then the issues that highlight the magnetic resonance coupling method, one of the wireless power transfer techniques, are included. Then, the basic principle of magnetic resonance coupling method is explained; maximum power transfer, maximum efficiency, alignment problem and its effects on human health are mentioned. Finally, electric vehicles and consumer electronics, biomedical implants, unmanned aerial vehicles and robots, which are the most intense application areas in wireless power transmission, are classified and the studies in these areas are included.

___

  • Ağçal, A., Bekiroglu, N., & Ozcira, S. (2015). Examination of efficiency based on air gap and characteristic impedance variations for magnetic resonance coupling wireless energy transfer. Journal of Magnetics, 20(1), 57–61. https://doi.org/10.4283/JMAG.2015.20.1.057
  • Ağçal, A., Bekİroğlu, N., & Özçira, S. (2018). M anyetik Rezonanslı Kuplaj ile Kablosuz Enerji Transferinde Hizalanmış ve Hizalanmamış Durumların Limitlerinin İncelenmes i. 30(3), 67–73.
  • Ahmad, A., Alam, M. S., & Chabaan, R. (2017). A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles. IEEE Transactions on Transportation Electrification, 4(1), 38–63. https://doi.org/10.1109/TTE.2017.2771619
  • Aydın, E., & Aydemir, M. T. (2021). A 1-kW wireless power transfer system for electric vehicle charging with hexagonal flat spiral coil. 2346–2361. https://doi.org/10.3906/elk-2012-68
  • Aydın, E., Aydemir, M. T., Aksoz, A., Baghdadi, M. El, & Hegazy, O. (2022). Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review. Energies, 15(14), 1–24. https://doi.org/10.3390/en15144962
  • Ayisire, E., El-Shahat, A., & Sharaf, A. (2019). Magnetic Resonance Coupling Modelling for Electric Vehicles Wireless Charging. GHTC 2018 - IEEE Global Humanitarian Technology Conference, Proceedings, 6–7. https://doi.org/10.1109/GHTC.2018.8601806
  • Bai, T., Mei, B., Zhao, L., & Wang, X. (2019). Machine Learning-Assisted Wireless Power Transfer Based on Magnetic Resonance. IEEE Access, 7(Ml), 109454–109459. https://doi.org/10.1109/ACCESS.2019.2933679
  • Barman, S. Das, Reza, A. W., Kumar, N., Karim, M. E., & Munir, A. B. (2015). Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications. Renewable and Sustainable Energy Reviews, 51, 1525–1552. https://doi.org/10.1016/j.rser.2015.07.031
  • Cannon, B.L. Hoburg, J.F. Stancil, D.D. Goldstein, S. C. (2009). Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers. IEEE Transactions on Power Electronics, 24(7), 1819–1825. https://doi.org/10.1109/TPEL.2009.2017195
  • Cheah, W. C., Watson, S. A., & Lennox, B. (2019). Limitations of wireless power transfer technologies for mobile robots. Wireless Power Transfer, 6(2), 175–189. https://doi.org/10.1017/wpt.2019.8
  • Chen, C. J., Chu, T. H., Lin, C. L., & Jou, Z. C. (2010). A study of loosely coupled oils for wireless power transfer. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(7), 536–540. https://doi.org/10.1109/TCSII.2010.2048403
  • Chen, W., Liu, C., Lee, C. H. T., & Shan, Z. (2016). Cost-effectiveness comparison of coupler designs of wireless power transfer for electric vehicle dynamic charging. Energies, 9(11). https://doi.org/10.3390/en9110906
  • Christ, A., Douglas, M. G., Roman, J. M., Cooper, E. B., Sample, A. P., Waters, B. H., Smith, J. R., & Kuster, N. (2013). Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits. IEEE Transactions on Electromagnetic Compatibility, 55(2), 265–274. https://doi.org/10.1109/TEMC.2012.2219870
  • Duong, T. P., & Lee, J. W. (2011). Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method. IEEE Microwave and Wireless Components Letters, 21(8), 442–444. https://doi.org/10.1109/LMWC.2011.2160163
  • Gao, L., Hu, W., Xie, X., Deng, Q., Wu, Z., Zhou, H., & Jiang, Y. (2013). Optimum design of coil for wireless energy transmission system based on resonant coupling. IEEE International Conference on Control and Automation, ICCA, 0(3), 190–195. https://doi.org/10.1109/ICCA.2013.6565157
  • Garnica, J., Chinga, R. A., & Lin, J. (2013). Wireless power transmission: From far field to near field. Proceedings of the IEEE, 101(6), 1321–1331. https://doi.org/10.1109/JPROC.2013.2251411
  • Houran, M. A., Yang, X., & Chen, W. (2018). Magnetically coupled resonance wpt: Review of compensation topologies, resonator structures with misalignment, and emi diagnostics. Electronics (Switzerland), 7(11). https://doi.org/10.3390/electronics7110296
  • Imura, T., Okabe, H., & Hori, Y. (2009). Basic experimental study on helical antennas of wireless power transfer for electric vehicles by using magnetic resonant couplings. 5th IEEE Vehicle Power and Propulsion Conference, VPPC ’09, 936–940. https://doi.org/10.1109/VPPC.2009.5289747
  • Issi, F., & Kaplan, O. (2020). Manyetik Rezonans Kuplajlı Kablosuz Enerji Transfer Sistemi için Empedans Analizi ve Değişken Kapasite Dizisi Uygulaması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, December. https://doi.org/10.29109/gujsc.817922
  • Jadidian, J., & Katabi, D. (2014). Magnetic MIMO: How To Charge Your Phone in Your Pocket. 7(11), 495–506. https://doi.org/10.1145/2639108.2639130
  • Jonah, O., & Georgakopoulos, S. V. (2012). Wireless powering of biomedical device via magnetic resonance. 2012 IEEE 13th Annual Wireless and Microwave Technology Conference, WAMICON 2012, 16–21. https://doi.org/10.1109/WAMICON.2012.6208446 Kesler, M. (2013). Highly resonant power transfer: Safe, Efficient, over Distance. WiTricity Corporation, Watertown, MA, USA.
  • Khan, S. R., Pavuluri, S. K., Cummins, G., & Desmulliez, M. P. Y. (2020). Wireless power transfer techniques for implantable medical devices: A review. Sensors (Switzerland), 20(12), 1–58. https://doi.org/10.3390/s20123487
  • Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljacic, M. (2007). Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science (New York, N.Y.), 317, 83–86. https://doi.org/10.1126/science.1143254
  • Lee, C. H., Jung, G., Hosani, K. Al, Song, B., Seo, D. K., & Cho, D. (2020). Wireless power transfer system for an autonomous electric vehicle. In Proceedings of 2020 IEEE Wireless Power Transfer Conference (WPTC), Seoul, Korea (South), 4, 467–470. https://doi.org/10.1109/WPTC48563.2020.9295631
  • Lee, K., & Cho, D. H. (2013). Diversity analysis of multiple transmitters in wireless power transfer system. IEEE Transactions on Magnetics, 49(6), 2946–2952. https://doi.org/10.1109/TMAG.2012.2234132
  • Lee, W., & Yoon, Y. K. (2020). Wireless Power Transfer Systems Using Metamaterials: A Review. IEEE Access, 8, 147930–147947. https://doi.org/10.1109/ACCESS.2020.3015176
  • Li, S., & Mi, C. C. (2015). Wireless power transfer for electric vehicle charging. AIP Conference Proceedings, 3(1), 4–17. https://doi.org/10.1063/5.0032383
  • Liu, J., Zhang, X., Yu, J., Xu, Z., & Ju, Z. (2019). Performance Analysis for the Magnetically Coupled Resonant Wireless Energy Transmission System. Complexity, 2019. https://doi.org/10.1155/2019/6090427
  • M. El Rayes, M., Nagib, G., & G. Ali Abdelaal, W. (2016). A Review on Wireless Power Transfer. International Journal of Engineering Trends and Technology, 40(5), 272–280. https://doi.org/10.14445/22315381/ijett-v40p244
  • Mittleider, A., Griffin, B., & Detweiler, C. (2016). Experimental Analysis of a UAV-Based Wireless Power Transfer Localization System (Vol. 109, pp. 357–371). https://doi.org/10.1007/978-3-319-23778-7_24
  • Mohamed, A. A. S., Shaier, A. A., Metwally, H., & Selem, S. I. (2022). An Overview of Dynamic Inductive Charging for Electric Vehicles. Energies, 15(15), 5613. https://doi.org/10.3390/en15155613
  • Mou, X., Gladwin, D. T., Zhao, R., & Sun, H. (2019). Survey on magnetic resonant coupling wireless power transfer technology for electric vehicle charging. https://doi.org/10.1049/iet-pel.2019.0529
  • Na, K., Kim, J., & Park, Y. J. (2019). Free-Positioning Magnetic Resonance Wireless Power Transfer System for Biomedical Devices. 2019 IEEE Wireless Power Transfer Conference, WPTC 2019, 497–501. https://doi.org/10.1109/WPTC45513.2019.9055698
  • Ng, D. C., Will, C. E., Allen, P. J., Bai, S., Boyd, C. S., Halpern, E., & Skafidas, E. (2011). Wireless power delivery for retinal prostheses. 8356–8360.
  • Nguyen, T. D., Li, S., Li, W., & Mi, C. C. (2014). Feasibility study on bipolar pads for efficient wireless power chargers. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 1676–1682. https://doi.org/10.1109/APEC.2014.6803531
  • Nguyen, V. T., Kang, S. H., Choi, J. H., & Jung, C. W. (2015). Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications. IEEE Transactions on Consumer Electronics, 61(2), 160–166. https://doi.org/10.1109/TCE.2015.7150569
  • Ning, P., Miller, J. M., Onar, O. C., & White, C. P. (2013). A compact wireless charging system for electric vehicles. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, 3629–3634. https://doi.org/10.1109/ECCE.2013.6647179
  • Okasili, I., Elkhateb, A., & Littler, T. (2022). A Review of Wireless Power Transfer Systems for Electric Vehicle Battery Charging with a Focus on Inductive Coupling.
  • Pashaei, A., Aydın, E., Polat, M., Yıldırız, E., & Aydemir, M. T. (2016). Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri. EMO Bilimsel Dergi, 1–12.
  • Patil, D., McDonough, M. K., Miller, J. M., Fahimi, B., & Balsara, P. T. (2018). Wireless Power Transfer for Vehicular Applications: Overview and Challenges. IEEE Transactions on Transportation Electrification, 4(1), 3–37. https://doi.org/10.1109/TTE.2017.2780627
  • Qiu, C., Chau, K. T., Liu, C., & Chan, C. C. (2013). Overview of wireless power transfer for electric vehicle charging. 2013 World Electric Vehicle Symposium and Exhibition, EVS 27, 1–9. https://doi.org/10.1109/EVS.2013.6914731
  • Song, M., Jayathurathnage, P., Zanganeh, E., Krasikova, M., Smirnov, P., Belov, P., Kapitanova, P., Simovski, C., Tretyakov, S., & Krasnok, A. (2021). Wireless power transfer based on novel physical concepts. Nature Electronics, 4(10), 707–716. https://doi.org/10.1038/s41928-021-00658-x
  • Thiagarajan, K., & Deepa, T. (2021). A Comprehensive Review of High-frequency Transmission Inverters for Magnetic Resonance Inductive Wireless Charging Applications in Electric Vehicles. IETE Journal of Research, 1–9. https://doi.org/10.1080/03772063.2021.1905089
  • Triviño, A., González-González, J. M., & Aguado, J. A. (2021). Wireless power transfer technologies applied to electric vehicles: A review. Energies, 14(6). https://doi.org/10.3390/en14061547
  • Uddin, M. K., Ramasamy, G., Mekhilef, S., Ramar, K., & Lau, Y. (2014). A Review on High Frequency Resonant Inverter Technologies for Wireless Power Transfer using Magnetic Resonance Coupling. 412–417.
  • Wang, J., Hu, M., Cai, C., Lin, Z., Li, L., & Fang, Z. (2018). Optimization design of wireless charging system for autonomous robots based on magnetic resonance coupling. AIP Advances, 8(5). https://doi.org/10.1063/1.5030445
  • Wang, Z., Wei, X., & Dai, H. (2016). Design and control of a 3 kW wireless power transfer system for electric vehicles. Energies, 9(1). https://doi.org/10.3390/en9010010
  • Wei, X., Wang, Z., & Dai, H. (2014). A critical review of wireless power transfer via strongly coupled magnetic resonances. Energies, 7(7), 4316–4341. https://doi.org/10.3390/en7074316
  • Zhang, Z., Pang, H., Georgiadis, A., & Cecati, C. (2019). Wireless Power Transfer - An Overview. IEEE Transactions on Industrial Electronics, 66(2), 1044–1058. https://doi.org/10.1109/TIE.2018.2835378