Makine Öğrenmesi ve İş Zekâsı Yöntemleriyle Mobil Uygulamaların Başarısı Arttırılabilir mi?

Mobil platformlar için geliştirilen uygulamaların sayısı, geliştirici ilgisinin büyük ölçüde mobil platformlara yönelmesiyle birlikte artışgöstermektedir. IOS platformunun yanısıra, geliştirilen mobil uygulamaların yayınlandığı ana platformlardan birisi olan Google PlayStore’da da özellikle açık kaynak kodlu olması sebebiyle, yoğun bir geliştirici ilgisi mevcuttur. Fakat geliştirilen uygulamanınsağlayabileceği başarı ya da hangi özelliklere sahip olması gerektiği gibi unsurlar için geliştiricilerin yararlanabileceği bir platformbulunmamaktadır. Bu çalışmada da bu sorun üzerine gidilmiştir. Bu doğrultuda, geliştirilen uygulamanın özelliklerine göre bir başarıtahminlemesi ve sınıflandırma yapılması amaçlanmıştır. Ayrıca geliştirilen uygulamanın, daha önce geliştirilmiş olan uygulamalarınözelliklerine göre iş zekâsı kapsamında değerlendirilmesi de çalışmanın dayanak noktalarından biridir. Araştırma kapsamında,uygulama rating tahminleri için Decision Tree Regressor (DTC), Random Forest Regressor (RFR), K-Neighbors Regressor (KNN) veAdaBoost Regressor (ABR) kullanılmış ve metriklerin doğruluğu R kare skoru (R2), Mean Square Error (MSE) ve Root Mean SquareError (RMSE) ile test edilmiştir. Sınıflandırma tahminleri için ise Random Forest Classification (RFC), Decision Tree Classification(DTC), K-Neighbors Classification (KNC), MLP Classification (MLP), AdaBoost Classification (ABC) ve Naive Bayes (GNB)algoritmaları kullanılmış ve metriklerin doğruluğu confusion matrix ile test edilmiştir. Bu kapsamda rating tahmini için en iyi sonuçları %80.73 ile DTR ve %82.89 ile RFR, başarı sınıflandırması için en iyi sonuçları ise %86.08 ile DTC, %89.83 ile RFC algoritmalarıvermiştir. Çalışma kapsamındaki makine öğrenmesi yönetimleriyle yapılan tüm tahminlemeler dinamik bir şekilde Flask frameworkkullanılarak web arayüzünde gösterilmiştir. Dolayısıyla, iş zekâsı ile geliştiricilerin karar desteği alabileceği bir platform oluşturulmuş ve ortaya çıkan sonuçlar analiz edilerek çalışma içerisine aktarılmıştır. Bu sayede, mobil uygulama geliştiricileri varsa eksikliklerinigörebilecekler ve başarı anlamında bir öngörüye sahip olabileceklerdir.

Could Mobile Applications' Success be Increased via MachineLearning and Business Intelligence Methods?

The number of applications developed for mobile platforms is increasing as developer interest is largely directed towards mobileplatforms. In addition to the IOS platform, Google Play Store, one of the main platforms where developed mobile applications arepublished, also has a lot of developer interest, especially because it is open source. But there is no platform that developers can benefitfrom for elements such as the success that the developed application can provide or what features it should have. In this study, thisproblem was addressed. Accordingly, it is aimed to estimate and classify success according to the characteristics of the developedapplication. In addition, the evaluation of the developed application within the scope of business intelligence according to thecharacteristics of the previously developed applications is one of the main points of the study. Within the scope of the research, DecisionTree Regressor (DTC), Random Forest Regressor (RFR), K-Neighbors Regressor (KNN) and AdaBoost Regressor (ABR) were usedfor application rating estimates and the accuracy of the metrics were tested with R square score (R2), Mean Square Error (MSE) andRoot Mean square Error (RMSE). Estimates for classification Random forest classification (RFC) decision tree classification (DTC),the K-Neighbors Classification (KNC), Classification MLP (MLP), AdaBoost Classification (ABC) and naïve Bayes (GNB) has beentested with the algorithms used and the accuracy of confusion matrix metrics. In this context, DTR with 80.73% and RFR with 82.89%gave the best results for rating estimation, DTC with 86.08% and RFC algorithms with 89.83% gave the best results for successclassification. All predictions made with machine learning management in the scope of the study are dynamically shown in the webinterface using the Flask framework. Therefore, a platform was created where developers could get Decision Support with businessintelligence and the resulting results were analyzed and transferred into the work. In this way, mobile application developers will beable to see their shortcomings, if any, and have a prediction in terms of success.

___

  • Aydın, C. (2018). Makine Öğrenmesi Algoritmaları Kullanılarak İtfaiye İstasyonu İhtiyacının Sınıflandırılması. European Journal of Science and Technology, 169–175. https://doi.org/10.31590/ejosat.458613
  • Birant, D. (2011). Comparison of decision tree algorithms for predicting potential air pollutant emissions with data mining models. Journal of Environmental Informatics, 17(1), 46–53. https://doi.org/10.3808/jei.201100186
  • Business of Apps. (2020). App Download and Usage Statistics. https://www.businessofapps.com/data/app-statistics/
  • Cui, J., Wang, L., Zhao, X., & Zhang, H. (2020). Towards predictive analysis of android vulnerability using statistical codes and machine learning for IoT applications. Computer Communications, 155(February), 125–131. https://doi.org/10.1016/j.comcom.2020.02.078
  • Das, T., Di Penta, M., & Malavolta, I. (2020). Characterizing the evolution of statically-detectable performance issues of Android apps. Empirical Software Engineering, 25(4), 2748–2808. https://doi.org/10.1007/s10664-019-09798-3
  • Day, M. Y., & Lin, Y. Da. (2017). Deep learning for sentiment analysis on google play consumer review. Proceedings - 2017 IEEE International Conference on Information Reuse and Integration, IRI 2017, 2017-Janua, 382–388. https://doi.org/10.1109/IRI.2017.79
  • De Mast, J., & Lokkerbol, J. (2012). An analysis of the Six Sigma DMAIC method from the perspective of problem solving. International Journal of Production Economics, 139(2), 604–614. https://doi.org/10.1016/j.ijpe.2012.05.035
  • Dehkordi, M. R., Seifzadeh, H., Beydoun, G., & NadimiShahraki, M. H. (2020). Success prediction of android applications in a novel repository using neural networks. Complex & Intelligent Systems. https://doi.org/10.1007/s40747-020-00154-3
  • Franke, D., & Weise, C. (2011). Providing a software quality framework for testing of mobile applications. Proceedings - 4th IEEE International Conference on Software Testing, Verification, and Validation, ICST 2011, 431–434. https://doi.org/10.1109/ICST.2011.18
  • García-Peñalvo, F., Conde-González, M., & Matellán, V. (2014). Mobile Apps for Older Users. The Development of a Mobile Apps Repository for Older People. International Conference on Learning and Collaboration Technologies, 117–126. https://doi.org/10.1007/978-3-319-07485-6
  • Gentner, D., Stelzer, B., Ramosaj, B., & Brecht, L. (2018). Strategic Foresight of Future B2B Customer Opportunities through Machine Learning. Technology Innovation Management Review, 8(10), 5–17. https://doi.org/10.22215/timreview/1189
  • Gupta, L. (2020). Google Play Store Apps Dataset. Web Scraped Data of 10k Play Store Apps for Analysing the Android Market (Version 6). https://www.kaggle.com/lava18/google-play-store-apps
  • Holzer, A., & Ondrus, J. (2011). Mobile application market: A developer’s perspective. Telematics and Informatics, 28(1), 22–31. https://doi.org/10.1016/j.tele.2010.05.006
  • Huang, C. J., Liu, M. C., Chu, S. S., & Cheng, C. L. (2005). Application of machine learning techniques to Web-based intelligent learning diagnosis system. Proceedings - HIS’04: 4th International Conference on Hybrid Intelligent Systems, 242–247. https://doi.org/10.1109/ichis.2004.25
  • Huber, S., Wiemer, H., Schneider, D., & Ihlenfeldt, S. (2019). DMME: Data mining methodology for engineering applications - A holistic extension to the CRISP-DM model. Procedia CIRP, 79, 403–408. https://doi.org/10.1016/j.procir.2019.02.106
  • Kılınç, M., Tarhan, Ç., & Aydın, C. (2019). 6. International Management Information Systems Conference “Connectedness and Cybersecurity” 09-12. October. https://2019.imisc.net/img/proceedings_bildiriler.pdf
  • Lam, M. (2004). Neural network techniques for financial performance prediction: Integrating fundamental and technical analysis. Decision Support Systems, 37(4), 567– 581. https://doi.org/10.1016/S0167-9236(03)00088-5
  • Lamhaddab, K., Lachgar, M., & Elbaamrani, K. (2019). Porting mobile apps from iOS to android: A practical experience. Mobile Information Systems, 2019(iii). https://doi.org/10.1155/2019/4324871
  • Martín, I., Hernández, J. A., & de los Santos, S. (2019). MachineLearning based analysis and classification of Android malware signatures. Future Generation Computer Systems, 97, 295–305. https://doi.org/10.1016/j.future.2019.03.006
  • Munoz, A., Martin, I., Guzman, A., & Hernandez, J. A. (2015). Android malware detection from Google Play meta-data: Selection of important features. 2015 IEEE Conference on Communications and NetworkSecurity, CNS 2015, 701– 702. https://doi.org/10.1109/CNS.2015.7346893
  • Olson, D. L., Delen, D., & Meng, Y. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52(2), 464–473. https://doi.org/10.1016/j.dss.2011.10.007
  • Onan, A. (2015). Şirket İflaslarının Tahminlenmesinde Karar Ağacı Algoritmalarının Karşılaştırmalı Başarım Analizi. Bilişim Teknolojileri Dergisi, 8(1), 9–19. https://doi.org/10.17671/btd.36087
  • Statcounter. (2020a). Desktop vs Mobile vs Tablet Market Share Worldwide | StatCounter Global Stats. https://gs.statcounter.com/platform-market-share/desktopmobile-tablet/worldwide
  • Statcounter. (2020b). Mobile Operating System Market Share Worldwide | StatCounter Global Stats. https://gs.statcounter.com/os-marketshare/mobile/worldwide
  • Statista. (2020). Biggest App Stores in the World 2020. https://www.statista.com/statistics/276623/number-ofapps-available-in-leading-app-stores/
  • Stoyanov, S. R., Hides, L., Kavanagh, D. J., Zelenko, O., Tjondronegoro, D., & Mani, M. (2015). Mobile App Rating Scale: A New Tool for Assessing the Quality of Health Mobile Apps. JMIR MHealth and UHealth, 3(1), e27. https://doi.org/10.2196/mhealth.3422
  • Üstün, D. (2019). Identification of Breast Cancer Using the Extreme Learning Machine Assisted by Firefly Algorithm. European Journal of Science and Technology, 17, 637–644. https://doi.org/10.31590/ejosat.623816
  • Yang, T. L., Lin, C. H., Chen, W. L., Lin, H. Y., Su, C. S., & Liang, C. K. (2020). Hash Transformation and Machine LearningBased Decision-Making Classifier Improved the Accuracy Rate of Automated Parkinson’s Disease Screening. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1), 72–82. https://doi.org/10.1109/TNSRE.2019.2950143
  • Zhu, H., Cao, H., Chen, E., Xiong, H., & Tian, J. (2012). Exploiting Enriched Contextual Information for Mobile App Classification. CIKM ’12: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 1617–1621. https://doi.org/10.1145/2396761.2398484
  • Zimbra, D., Sarangee, K. R., & Jindal, R. P. (2017). Movie aspects, tweet metrics, and movie revenues: The influence of iOS vs. Android. Decision Support Systems, 102, 98– 109. https://doi.org/10.1016/j.dss.2017.08.002
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç