Güney ve Doğu Anadolu’ da Soğurulmanın (1/QC) Yanal Heterojenitesi

Bu çalışma coda kalite faktörü ile sismik aktivite, tektonik süreksizlik ve litosferik heterejonite arasındaki olası uyum ve uyumsuzluklarbelirlenmeye çalışılmıştır. Bu amaç ile farklı tektonik sistemler üzerinde bulunan ve sismik aktivitesi birebirinden farklı olan Kemaliye,Diyarbakır ve Erzurum sismik istasyonlarından elde edilen Sg dalgaları kullanılmıştır. Birbirinden farklı fay zonlarının etkisi altındakibu üç alanda sığ kabuğa ait yanal koda kalite faktörü (QC) ve soğrulma değerleri (1/QC) ile frekans bağımlılıkları (η) yanal değişimleribelirlenerek karşılaştırmalı olarak incelenmiştir. Çalışmada Qc ve η değerlerini elde etmek için izotropik tek saçılma yöntemikullanılmıştır. En düşük koda Q1=(82±5) değeri Kemaliye istasyonundan, en yüksek Q2=(90±5) değeri Diyarbakır istasyonundan veQ3=(86±3) değeri de Erzurum istasyonundan elde edilmiştir. En yüksek soğurma değerleri Kemaliye istasyonunda elde edilirken endüşük soğurma değerleri Erzurum istasyonundan elde edilmiştir. En yüksek η değerleri 0.96∓0.04 olarak Kemaliye sismik istasyonuverilerinden en düşük değeri 0.85±0.03 olarak Diyarbakır istasyonu kayıtlarından elde edilmiştir. Erzurum istasyonu için ise değeri0.88∓0.02 olarak elde edilmiştir. Koda değerleri 82 ve 90, frekans bağımlılığı değerleri 0.66 ve 1.27 aralığında elde edilmiştir. Üçbölgenin 1/QC ve frekans bağımlılığı değerleri, kabuğun sismotektonik aktivitesindeki bölgesel farklılıklara bağlı olarak 0.001-0.014arasında değişmektedir. Kemaliye bölgesine ait yanal soğrulma değerlerinin Erzurum ve Diyarbakır bölgelerinden oldukça farklıbulunmuş olması bu bölgenin tektonik olarak diğer iki bölgeden daha aktif olduğu gerçeği ile desteklenmiştir. Üç istasyona ait Koda vefrekans bağımlılığı değerleri ile bölgede bulunan üç farklı sismik rejim ve litosferik kabuk yapısına ait yeni bilgiler elde edilmiştir.

The Lateral Heterogeneity of Attenuation (1/QC) in Southeasternan Anatolia

In this study, possible adaptations and inadaptations between the coda quality factor and seismic activity, tectonic discontinuity and lithospheric heterogeneity were attempted to be determined. For this purpose, Sg waves obtained from Kemaliye, Diyarbakır and Erzurum seismic stations, which are on different tectonic systems and whose seismic activities are different from one another, have been used. In these three areas under the influence of different fault zones, the lateral code quality factor (QC) and attenuation values (1/QC) and frequency dependence (η) lateral chance of the shallow crust have been determined and analyzed comparatively. The single isotropic scattering method has been used to obtain Qc and η values in the study. The lowest coda value Q1=(82±5) was obtained from Kemaliye station, the highest value Q2=(90±5) was obtained from Diyarbakır station and Q3 = (86±3) value was obtained from Erzurum station. The highest attenuation values were obtained at Kemaliye station, while the lowest attenuation values were obtained at Erzurum station. The highest η values were obtained from Kemaliye seismic station data as 0.96∓0.04 and the lowest η value was obtained from Diyarbakır station records as 0.85±0.03. The value for Erzurum station η was obtained as 0.88∓0.02. Coda values were obtained in the range of 82 and 90 and frequency dependence values 0.66 and 1.27. The 1/QC and frequency dependence values of the three regions range from 0.001 to 0.014, showing regional differences in the seismotectonic activity of the crust. The fact that the lateral attenuation values of Kemaliye region were found to be quite different from the regions of Erzurum and Diyarbakir was supported by the fact that this region was tectonically more active than the other two regions. New information has been obtained for coda and frequency dependence values of the three stations and three different seismic regimes and lithospheric crustal structure in the region.

___

  • Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. Journal of geophysical research, 74(2), 615-631.
  • Aki, K. (1980). Scattering and attenuation of shear waves in the lithosphere. Journal of Geophysical Research: Solid Earth, 85(B11), 6496-6504.
  • Aki, K. (2004). A new view of earthquake and volcano precursors. Earth, planets and space, 56(8), 689-713.
  • Aki, K., & Chouet, B. (1975). Origin of coda waves: source, attenuation, and scattering effects. Journal of geophysical research, 80(23), 3322-3342.
  • Allen, C. R. (1969). Active faulting in northern Turkey.
  • Aydın, U. (2015). Estimation of seismodynamics differences and lateral variations of coda Q in Eastern Anatolia. Arabian Journal of Geosciences, 8(8), 6363-6370.
  • Aydin, U., & Şahin, Ş. (2011). Comparison of the attenuation properties for two different areas in eastern Anatolia, Turkey. Soil Dynamics and Earthquake Engineering, 31(8), 1192-1195.
  • Barka, A., & Kadinsky‐Cade, K. (1988). Strike‐slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7(3), 663-684.
  • Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica acta, 14(1-3), 3-30.
  • Eyidoğan, H., Akıncı, A., Gündoğdu, O., Polat, O., & Kaypak, B. (1996). Investigation of the recebt seismic activity of Gökova Basin. Paper presented at the National Marine Geology and Geophysical Programme Workshop I, Proceedings.
  • Giampiccolo, E., Gresta, S., & Rascona, F. (2004). Intrinsic and scattering attenuation from observed seismic codas in southeastern Sicily (Italy). Physics of the Earth and Planetary Interiors, 145(1-4), 55-66.
  • Jin, A., & Aki, K. (1988). Spatial and temporal correlation between coda Q and seismicity in China. Bulletin of the Seismological Society of America, 78(2), 741-769.
  • Johnston, D., & Toksöz, M. (1981). Definitions and terminology: Seismic Wave Attenuation, Geophysics reprint series no. 2. Society of Exploration Geophysicists, Tulsa.
  • Ketin, I. (1969). Kuzey Anadolu fayi hakkinda. MTA Dergisi, 72, 1-27.
  • Knopoff, L. (1964). Q Rev. Geophysics, 2, 625-660.
  • Mak, S., Chan, L., Chandler, A., & Koo, R. (2004). Coda Q estimates in the Hong Kong region. Journal of Asian Earth Sciences, 24(1), 127-136.
  • McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., & Tealeb, A. (2003). GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International, 155(1), 126-138.
  • McKenzie, D. (1970). Plate tectonics of the Mediterranean region. Nature, 226(5242), 239-243.
  • Rautian, T., & Khalturin, V. (1978). The use of the coda for determination of the earthquake source spectrum. Bulletin of the Seismological Society of America, 68(4), 923-948.
  • Romanowicz, B., & Mitchell, B. J. (2012). Q of the earth: Global, regional, and laboratory studies: Birkhäuser.
  • Sato, H. (1977). Energy propagation including scattering effects sengle isotropic scattering approximation. Journal of Physics of the Earth, 25(1), 27-41.
  • Sato, H., Fehler, M. C., & Maeda, T. (2012). Seismic wave propagation and scattering in the heterogeneous earth (Vol. 496): Springer.
  • Sengor, A. (1980). Turkiye’nin neotektoniginin esasları (The principles of neotectonics of Turkey, in Turkish). Turkish Assoc Geol Press, Ankara, 2.
  • Sengör, A. (1979). The North Anatolian transform fault: its age, offset and tectonic significance. Journal of the Geological Society, 136(3), 269-282.
  • Singh, S., & Herrmann, R. B. (1983). Regionalization of crustal coda Q in the continental United States. Journal of Geophysical Research: Solid Earth, 88(B1), 527-538.
  • Toksöz, M., Shakal, A., & Michael, A. (1979). Space-time migration of earthquakes along the North Anatolian fault zone and seismic gaps. pure and applied geophysics, 117(6), 1258-1270.