Hava Yakıt Isıtmanın Kojenerasyon Çevrimleri Üzerindeki Etkilerinin Performans Analizi

Ülkemizde ve dünyada elektrik enerjisi tüketimi giderek artmaktadır. Elektrik enerjisi ve ısı enerjisi birincil enerjilerdir ve endüstride ve hayatımızda hayati bir role sahiptir. Bu iki enerjinin farklı döngülerde üretilmesi, enerji kaybına ve verimin düşmesine neden olur. Her ikisinin de aynı çevrimde üretilmesi ile verim çok artar, enerji kayıpları ve emisyon değerleri çok azalır. Elektrik ve ısı enerjisi üretmek için kojenerasyon sistemi kurularak, enerji tüketim maliyetleri önemli ölçüde azaltılabilir. Gaz türbini çıkışında egzoz gazlarından alınan ısı ile yanma odasına giren yakıtın ve havanın ısıtıldığı çevrim, ekserji analizi yöntemi ve termodinamiğin birinci ve ikinci yasaları kullanılarak analiz edilmiştir. Egzoz gazlarında kalan ısı enerjisi, bu çevrimde havayı ve yakıtı ısıtmak için bir miktar ısı enerjisi tüketildikten sonra buhar üretiminde kullanılır. Türbin, reküperatör kompresör, yanma odası, ısı eşanjörü gibi çevrimi oluşturan cihazların ve tüm çevrim için performans analizleri elde edilmiş ve tartışılmıştır. Cihazların ekserji verimi, ekserji kayıpları ve diğer performans parametreleri elde edilmiş ve tartışılmıştır.

Performance Analysis of Air Fuel Heating Effects on Cogeneration Cycles

The electrical energy consumption is increasing in our country and in the world. The electrical energy and heat energy are primary energies and has a vital role on industry and our lives. The production of these two energies in different cycles leads to energy loss and low efficiency. With the production of both in the same cycle, the efficiency increases a lot, and the energy losses and emission values decrease a lot. By installing cogeneration system to produce electrical and heat energy, the energy consumption costs can be reduced importantly. The cycle in which the fuel and the air entering into combustion chamber is heated by the heat taken from the exhaust gases at the outlet of the gas turbine is analyzed by using exergy analysis method and, first and second laws of thermodynamics. The heat energy remained in the exhaust gases are used to produce in steam production, after some heat energy is consumed to heat the air and the fuel, in this cycle. The performance analysis of the devices that make up the cycle such as turbine, recuperator compressor, combustion chamber, and heat exchanger and for the whole cycle and were obtained and discussed. Exergy efficiency, exergy losses and other performance parameters of the devices were obtained and discussed.

___

  • ASHRAE. (2000). Cogeneration systems and engine and turbine drives. ASHRAE systems and equipment handbook (SI).
  • Peters MS, Timmerhaus KD, West RE. (2003). Plant design and economics for chemical engineers. Mc Graw Hill chemical engineering series. 5th ed.
  • Moran JM, Tsatsaronis G. (2000). The CRC handbook of thermal engineering. CRC Press LLC.
  • Bejan A, Tsatsaronis G, Moran M. (1996). Thermal design and optimization. Wiley Pub.
  • Jaluria Y. (2008). Design and optimization of thermal systems. CRC Press.
  • Horlock JH. (1997). Cogeneration-combined heat and power (CHP). CRIEGER Pub.
  • Karaali, R., and Ozturk, I.T. (2015). Thermoeconomic optimization of gas turbine cogeneration plants. Energy 80, 474-485.
  • Tozlu Alperen, Gençaslan Betül, Özcan Hasan. (2021). Thermoeconomic Analysis of a Hybrid Cogeneration Plant with Use of Near-Surface Geothermal Sources in Turkey. Renewable Energy, vol.176, pp:237 – 250.
  • Karaali, R., and Ozturk, I.T. (2015). Thermoeconomic analyses of steam injected gas turbine cogeneration cycles. ACTA Physica Polonica A. 128, 2B, p: B279-B281.
  • Karaali, R., and Ozturk, I.T. (2017). Efficiency improvement of gas turbine cogeneration systems. Tehnicki vjesnik - Technical Gazette, 24, Suppl.1 p:21-27. DOI: 10.17559/TV-20140509154652
  • Özahi E., Abuşoğlu A., Tozlu A. (2021). A Comparative Thermoeconomic Analysis and Optimization of Two Different Combined Cycles by Utilizing Waste Heat Source of an Mswpp. Energy Conversion and Management, vol.228.
  • Karaali, R., and Ozturk, I.T. (2017). Effects of Ambient Conditions on Performance of Gas Turbine Cogeneration Cycles. J. of Thermal Science and Technology, Volume 37 No. 1, pages 93-102.
  • Karaali, R., and Ozturk, I.T. (2017). Performance Analyses of Gas Turbine Cogeneration Plants. J. of Thermal Science and Technology, Volume 37, No. 1, pages 25-33.