Giriş Havasının Absorpsiyonlu Soğutma Etkilerinin Temel Kojenerasyon Sistemlerinde Ekserji Analizi

Elektrik enerjisinin kullanımı hayatımızda ve dünyada giderek artmaktadır. Elektrik enerjisi bilindiği gibi bağlantı hatlarında yaklaşık %11 oranında kaybolmaktadır. Bir kojenerasyon sisteminde elektrik ve ısı enerjisinin ihtiyaca cevap verecek şekilde üretilmesi ile yakıt kullanımında daha fazla verim elde edilebilir ve bu da enerji maliyetlerini azaltabilir. Bir kojenerasyon çevriminde absorpsiyonlu soğutma sistemi ile kompresöre giren hava soğutulur ve soğutma egzoz gazlarının ısısının enerjisinden elde edilir. Bu çalışmada sistem, ekserji analizi yöntemi ve termodinamiğin 1. ve 2. yasaları kullanılarak analiz edilmiştir. Bu çevrimde ısı enerjisinin bir kısmı havayı soğutmak için tüketilir ve kalan ısı buhar üretmek için kullanılır. Tüm çevrimin performans analizi ve çevrimi oluşturan kompresör, yanma odası, türbin ve ısı eşanjörü gibi cihazlar elde edilmiş ve tartışılmıştır. Ayrıca cihazların ekserji kayıpları, ekserji verimliliği ve diğer performans parametreleri elde edilmiş ve tartışılmıştır. Sonuçlar, temel bir çevrimde absorpsiyonlu soğutma (abc) sisteminin kullanılmasının, elektrik verimliliğinde temel olandan daha iyi olduğunu gösterdi. Bununla birlikte, absorpsiyonlu soğutma (abc) sistemi nedeniyle ekserji verimliliği, temel olandan biraz daha düşüktür. Absorpsiyonlu soğutma (abc) kojenerasyon sistemi, daha fazla elektrik üretimi için buhar talebi azaldığında veya elektrik talebi arttığında kullanılabilir.
Anahtar Kelimeler:

Kojenerasyon, Ekserji, Absorpsiyon

Exergy Analysis of Inlet Air Absorption Cooling Effects on Basic Cogeneration Systems

The use of the electrical energy is increasing in our life and in the world. The electrical energy is lost in the connection lines about 11%, as it is known. By producing the electrical and the heat energy in a cogeneration system to meet the needs, it can be obtained more efficiency in the use of fuel, and that can reduce energy costs. In a cogeneration cycle, by the absorption cooling system, the air entering into the compressor is cooled, and the cooling is obtained from energy of the heat of the exhaust gases. The system in this study is analyzed by using exergy analysis method and 1. and 2. laws of thermodynamics. Some of the heat energy is consumed to cool the air, in this cycle and the remaining heat is used to produce steam. The performance analysis of the whole cycle and also the devices that make up the cycle such as compressor, combustion chamber, turbine and heat exchanger were obtained and discussed. Also exergy losses, exergy efficiency and other performance parameters of the devices were obtained and discussed. The results showed that using absorption cooling (abc) system in a basic cycle made better than the basic one in electrical efficiency. However, because of the absorption cooling (abc) system the exergy efficiency is slightly less than the basic one. The absorption cooling (abc) cogeneration system can be used when the steam demand decreases or electrical demand increases for production more electricity.

___

  • ASHRAE. (2000). Cogeneration systems and engine and turbine drives. ASHRAE systems and equipment handbook (SI).
  • Peters MS, Timmerhaus KD, West RE. (2003). Plant design and economics for chemical engineers. Mc Graw Hill chemical engineering series. 5th ed.
  • Elhanan, A.E.M.E. (2006). Cogeneration of Electricity and Cooling by Gas Turbines. (Ph.D. thesis) İTÜ, Fen Bilimleri Enstitüsü. Moran JM, Tsatsaronis G. (2000). The CRC handbook of thermal engineering. CRC Press LLC.
  • Jaluria Y. (2008). Design and optimization of thermal systems. CRC Press.
  • Bejan A, Tsatsaronis G, Moran M. (1996). Thermal design and optimization. Wiley Pub.
  • Horlock JH. (1997). Cogeneration-combined heat and power (CHP). CRIEGER Pub.
  • Karaali, R., and Ozturk, I.T. (2015). Thermoeconomic optimization of gas turbine cogeneration plants. Energy 80, 474-485.
  • Karaali, R., and Ozturk, I.T. (2015). Thermoeconomic analyses of steam injected gas turbine cogeneration cycles. ACTA Physica Polonica A. 128, 2B, p: B279-B281.
  • Tozlu A., Gençaslan B., Özcan H. (2021). Thermoeconomic Analysis of a Hybrid Cogeneration Plant with Use of Near-Surface Geothermal Sources in Turkey. Renewable Energy, vol.176, pp:237 – 250.
  • Karaali, R., and Ozturk, I.T. (2017). Efficiency improvement of gas turbine cogeneration systems. Tehnicki vjesnik - Technical Gazette, 24, Suppl.1 p:21-27. DOI: 10.17559/TV-20140509154652
  • Karaali, R., and Ozturk, I.T. (2017). Effects of Ambient Conditions on Performance of Gas Turbine Cogeneration Cycles. J. of Thermal Science and Technology, Volume 37 No. 1, pages 93-102.
  • Karaali, R., and Ozturk, I.T. (2017). Performance Analyses of Gas Turbine Cogeneration Plants. J. of Thermal Science and Technology, Volume 37, No. 1, pages 25-33.
  • Özahi E., Abuşoğlu A., Tozlu A. (2021). A Comparative Thermoeconomic Analysis and Optimization of Two Different Combined Cycles by Utilizing Waste Heat Source of an Mswpp. Energy Conversion and Management, vol.228.