904L Paslanmaz Çeliğe Düşük Sıcaklık Alüminyumlamanın Etkisi

İntermetalik malzemeler birçok uygulama için arzu edilen özellikler sergilemektedirler. Döküm veya toz metalurjisi gibi geleneksel üretim teknikleri ile üretilebilirler. Ayrıca bazı kaplama teknikleri kullanılarak üretilebilirler. Kutu sementasyon tekniği, intermetalik bir tabaka oluşturmak için çok ucuz, hızlı ve basit bir işlemdir. 904L süper östenitik paslanmaz çelik yüksek miktarda Fe, Ni ve Cr' den oluşmaktadır. Kağıt hamuru ve kağıt işlemede, bazı asit işleme tesislerinde, soğutma cihazlarında veya petrol rafinerisi malzemelerinde kullanılabilmektedir. Sertliği yüksek değildir ve kullanım sıcaklığı düşüktür (

Effect of Low-Temperature Aluminizing on 904L Stainless Steel

Intermetallic materials exhibit desirable properties for many applications. They can be produced by traditional production techniques such as casting or powder metallurgy. In addition, they can be manufactured using some coatings techniques. Pack cementation technique is a very cheap, fast and simple operation to produce an intermetallic layer. 904L super austenitic stainless steel composed of high amounts Fe, Ni and Cr. It can be used in pulp and paper processing, some acid processing plants, cooling devices or oil refinery material. Its hardness is not high, and its usage temperature is low (

___

  • Koppula, S., Jagarlamudi, V. G., Prudhvi, R. S., Rajkumar, A., Prashanth, S., Saranya, J., ... & Subbiah, R. (2021). Investigation of AISI 904L austenitic stainless steel by carbonitriding process under dry sliding conditions. Materials Today: Proceedings, 44, 1418-1422.
  • Çetin, M., Günen, A., Kalkandelen, M., & Karakaş, M. S. (2021). Microstructural, wear and corrosion characteristics of boronized AISI 904L superaustenitic stainless steel. Vacuum, 187, 110145.
  • Maistro, G., Oikonomou, C., Rogström, L., Nyborg, L., & Cao, Y. (2017). Understanding the microstructure-properties relationship of low-temperature carburized austenitic stainless steels through EBSD analysis. Surface and Coatings Technology, 322, 141-151.
  • Jiang, R., Zou, G., Shi, W., Liang, Y., & Xiang, S. (2019). Corrosion behavior of plasma-nitrided 904L austenitic stainless steel in hydrofluoric acid. Journal of Materials Engineering and Performance, 28(3), 1863-1872.
  • Koppula, S., Jagarlamudi, V. G., Prudhvi, R. S., Rajkumar, A., Prashanth, S., Saranya, J., Saranya, N., Sateesh R., & Subbiah, R. (2021). Investigation of AISI 904L austenitic stainless steel by carbonitriding process under dry sliding conditions. Materials Today: Proceedings, 44, 1418-1422.
  • Priest, M. S., & Zhang, Y. (2015). Synthesis of clean aluminide coatings on Ni‐based superalloys via a modified pack cementation process. Materials and Corrosion, 66(10), 1111-1119.
  • Erdogan, A., Yener, T., Doleker, K. M., Korkmaz, M. E., & Gök, M. S. (2021). Low-Temperature Aluminizing Influence On Degradation of Nimonic 80A Surface: Microstructure, Wear and High Temperature Oxidation Behaviors. Surfaces and Interfaces, 101240.
  • Xiang, Z. D., & Datta, P. K. (2004). Pack aluminisation of low alloy steels at temperatures below 700 C. Surface and Coatings Technology, 184(1), 108-115.
  • Dong, J., Sun, Y., & He, F. (2019). Formation mechanism of multilayer aluminide coating on 316L stainless steel by low-temperature pack cementation. Surface and Coatings Technology, 375, 833-838.
  • Matysik, P., Jóźwiak, S., & Czujko, T. (2015). Characterization of low-symmetry structures from phase equilibrium of Fe-Al system—Microstructures and mechanical properties. Materials, 8(3), 914-931.
  • Li, X., Scherf, A., Heilmaier, M., & Stein, F. (2016). The Al-rich part of the Fe-Al phase diagram. Journal of Phase Equilibria and Diffusion, 37(2), 162-173.
  • Yener, T., Erdogan, A., Gök, M. S., & Zeytin, S. (2021). Formation, characterization, and wear behavior of aluminide coating on mirrax® ESR steel by low-temperature aluminizing process. Journal of Tribology, 143(1), 011703.
  • Yener, T., Doleker, K. M., & Erdogan, A. (2019). High temperature oxidation behavior of low temperature aluminized Mirrax® ESR steel. Materials Research Express, 6(11), 116407.