Biyobozunur ZW21 Döküm Alaşımlarının Mikroyapı, Sertlik ve Korozyon Özelliklerini İncelenmesi

Bu çalışmada, Çinko (Zn) ve İtriyum (Y) içeren magnezyum (Mg) alaşımlarından ZW21 alaşımı kokıl kalıba dökülerek üretimleri yapılmıştır ve daha sonra mikroyapı, sertlik, korozyon ve aşınma özellikleri incelenmiştir. Üretilen alaşımların mikroyapı görüntüleri, zımparalama, parlatma ve dağlama gibi klasik metalografik yöntemleriyle yapılmıştır. Mikroyapı görüntüleri optik ve SEM cihazları ile alınmış ve EDX analizleri yapılmıştır. Metalografik olarak hazırlanan numunelerin sertlikleri Brinell sertlik test cihazı ile tespit edilmiştir. In vitro deneyleri gerçekleşebilmek için, potansiyodinamik polarizasyon ve daldırma testleri Hank sıvısında (36.5 ± 0.5ºC) sıcaklığında yapılmıştır. Ayrıca, korozif Aşınma testlerinde, sabit yük altında, sabit hız, mesafede, Hank sıvısında ileri-geri aşınma yöntemiyle yapılmıştır. XRD sonuçlarına göre I ve W fazlarının varlığı tespit edilmiştir. Malzemelerin sertliği 52.55 HV olarak bulunmuştur. Korozyon hızının zamanla yavaşladığı ve numune yüzeylerinde oksit film tabaksı oluşturulduğunu gözlenmiştir. Korozif aşınmada mesafeye bağlı olarak önemli bir ağırlık kaybı tespit edilmiştir.

An Investigation On Microstructural, Hardness and Corrosion Properties of As-Cast ZW21 Biodegredable Alloy

In this study, ZW21 alloy one of magnesium (Mg) alloys containing Zinc (Zn) and Yttrium (Y) was produced by gravity casting method then its microstructure, hardness, corrosion and wear properties were investigated. The microstructure images of the produced alloys were made by classical metallographic methods such as sanding, polishing and etching. Microstructure images were taken with optical and SEM devices and EDX analyzes were performed. The hardness of the metallographically prepared samples was determined by Brinell hardness tester. To achieve in vitro experiments, potentiodynamic polarization and immersion tests were performed in Hank's solution at (36.5 ± 0.5ºC). In addition, in the corrosive wear tests, a reciprocating wear test device was used to implement the necessary experiments under constant load, at constant speed and distance also with Hank's contact conditions. According to XRD results, the presence of I and W phases was determined. The hardness of the materials was found to be 52.55 HV. It was observed that the corrosion rate slowed down over time and an oxide film layer was formed on the sample surfaces. A significant mass loss was detected in corrosive wear depending on the distance.

___

  • Chen, T. J., Guo, H., Ma, Y., & Hao, Y. (2015). Effects of Reheating Temperature and Time on the Microstructure and Mechanical Properties of Thixoforged ZW21 Alloy. MATERIALS TRANSACTIONS, 56(9), 1530–1538. https://doi.org/10.2320/matertrans.M2015151
  • Ding, Y., Wen, C., Hodgson, P., & Li, Y. (2014). Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. J. Mater. Chem. B, 2(14), 1912–1933. https://doi.org/10.1039/C3TB21746A
  • Hänzi, A. C., Gerber, I., Schinhammer, M., Löffler, J. F., & Uggowitzer, P. J. (2010). On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys☆. Acta Biomaterialia, 6(5), 1824–1833. https://doi.org/10.1016/j.actbio.2009.10.008
  • Kabir, H., Munir, K., Wen, C., & Li, Y. (2021). Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive Materials, 6(3), 836–879. https://doi.org/10.1016/j.bioactmat.2020.09.013
  • Li, N., & Zheng, Y. (2013). Novel Magnesium Alloys Developed for Biomedical Application: A Review. Journal of Materials Science & Technology, 29(6), 489–502. https://doi.org/10.1016/j.jmst.2013.02.005
  • Li, Q., Wang, Q., Zhou, H., Zeng, X., Zhang, Y., & Ding, W. (2005). High strength extruded Mg–5Zn–2Nd–1.5Y–0.6Zr–0.4Ca alloy produced by electromagnetic casting. Materials Letters, 59(19–20), 2549–2554. https://doi.org/10.1016/j.matlet.2005.03.044
  • Tahreen, N., & Chen, D. L. (2016). A Critical Review of Mg-Zn-Y Series Alloys Containing I, W, and LPSO Phases . Advanced Engineering Materials, 18(12), 1983–2002. https://doi.org/10.1002/adem.201600393
  • Tie, D., Feyerabend, F., Müller, W.-D., Schade, R., Liefeith, K., Kainer, K., & Willumeit, R. (2013). Antibacterial biodegradable Mg-Ag alloys. European Cells and Materials, 25, 284–298. https://doi.org/10.22203/eCM.v025a20
  • T.J. Chen , W. W. D. H. Z. Y. M. Y. H. (2012). , Effects of heat treatment on microstructure and mechanical properties of ZW21 magnesium alloy.
  • T.J. Chen , W. W. D. H. Z. Y. M. Y. H. (). Development of a new magnesium alloy ZW21. Materials and Design. Wang, Y., Wei, M., Gao, J., Hu, J., & Zhang, Y. (2008). Corrosion process of pure magnesium in simulated body fluid. Materials Letters, 62(14), 2181–2184. https://doi.org/10.1016/j.matlet.2007.11.045
  • Yamaguchi, M. (1998). Role of zinc in bone formation and bone resorption. The Journal of Trace Elements in Experimental Medicine, 11(2–3), 119–135. https://doi.org/10.1002/(SICI)1520-670X(1998)11:2/3<119::AID-JTRA5>3.0.CO;2-3
  • Zhang, B., Li, B., Gao, S., Li, Y., Cao, R., Cheng, J., Li, R., Wang, E., Guo, Y., Zhang, K., Liang, J., & Liu, B. (2020). Y-doped TiO2 coating with superior bioactivity and antibacterial property prepared via plasma electrolytic oxidation. Materials & Design, 192, 108758. https://doi.org/10.1016/j.matdes.2020.108758
  • Zheng, Y. (2015). Magnesium Alloys as Degradable Biomaterials. CRC Press. https://doi.org/10.1201/b18932