Fotovoltaik Sistemlerde Performans Hesaplama Modellerinin Ankara (Orta Anadolu) için Karşılaştırılması

Tekno-ekonomik analizlerde doğru fizibilite sonuçlarına erişebilmek için FV sistemlerin performansı gerçeğe yakın hesaplanmak zorundadır. FV sistem performansını tahminlemek için birçok model/hesaplama yöntemi vardır. Bu çalışmada, tüm yıl boyunca beş modül için Ankara’da ölçülmüş açık alan test verileri ile üç yazılımın (PV*Sol, PVsyst, HelioScope) aynı yer için tahmin sonuçları karşılaştırılmıştır. Bu yazılımların seçilme nedeni tasarımcılar, finansal uzmanlar ve yatırımcılar tarafından yaygın olarak kullanılmalarıdır. Sonuçların ilk analizleri, FV sistemler için performans hesaplama metodları çok sayıda bağımlı ampirik parametre ve üretilen modüllerdeki farklılıkları içerdiklerinden dikkatli bir şekilde değerlendirilmesi ve kullanılması gerektiğini gösterdi. Bu sebepten ötürü bu makale Mono-Si, Poly-Si, µc-Si/a-Si, CIS, ve HIT modül tiplerini kullanan sistemlere odaklanmaktır. Karşılaştırma sonuçları yazılımların tahminleme doğruluklarının makul seviyede olduğunu ortaya çıkarmıştır ancak Heiloscope Ankara’nın (Orta Anadolu) iklim koşulları için diğerlerinden daha iyi performans göstermiştir.

Comparison of the Models for Solar Photovoltaic System Performance Calculations for Ankara (Middle Anatolia)

In a techno-economic analysis, to reach truthful feasibilities, accurate performance calculation of PV systems is a must. There are manymodels/calculation schemes to estimate PV module performances. In this study, we compare the estimation of three software (PV*Sol,PVsyst, HelioScope) using a whole year field data obtained in Ankara, for five-module types. The reason for these choices of thesoftware is their common utilization by designers, financing bodies and investors. The results of the preliminary analysis showed thatthe calculation methods for the PV systems performances should be carefully evaluated and used as they contain quite many locateddependent empirical parameters, and distinctions in the fabricated modules. Therefore, the present article focuses on the systems thatuse the module types of Mono-Si, Poly-Si, µc-Si/a-Si, CIS, and HIT. The comparisons showed that the estimation accuracies of thesoftware are reasonable, yet the software Helioscope performs better than the others for the weather conditions of Ankara, MiddleAnatolia.

___

  • Ceylan, O., & Tasdelen, K. (2018). Investigation of TheAccuracy of PhotovoltaicPrograms SimulationResultsfor Isparta City. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 18(2), 895–903. https://doi.org/10.5578/fmbd.67547
  • Climate Change & Infectious Diseases Group. (2019). World Maps of Köppen-Geiger climate classification. Retrieved from Climate Change & Infectious Diseases Group website: http://koeppen-geiger.vu-wien.ac.at/present.htm
  • Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes (4th ed.). https://doi.org/10.1002/9781118671603
  • EIA. (2017). International Energy Outlook 2017 Overview. In U.S. Energy Information Administration. Retrieved from https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf
  • Guittet, D. L., & Freeman, J. M. (2018). Validation of Photovoltaic Modeling Tool HelioScope Against Measured Data. National Renewable Energy Laboratory, (November). Retrieved from https://www.nrel.gov/docs/fy19osti/72155.pdf.
  • IRENA. (2018). Renewable Power Generation Costs in 2017. In International Renewable Energy Agency. Retrieved from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf
  • Karaveli, A B, Ozden, T., & Akinoglu, B. G. (2018). Determining Photovoltaic Module Performance and Comparisons. 2018 International Conference on Photovoltaic Science and Technologies (PVCon), 1–5. https://doi.org/10.1109/PVCon.2018.8523868
  • Karaveli, Abdullah Bugrahan. (2018). Development of the Algorithm of Solar Turnkey: Solar Electricity Software for Turkey. METU, Earth System Science, Ph.D Thesis.
  • Karaveli, Abdullah Bugrahan, & Akinoglu, B. G. (2018). Development of new monthly global and diffuse solar irradiation estimation methodologies and comparisons. International Journal of Green Energy, 15(5), 333–346. https://doi.org/10.1080/15435075.2018.1452744
  • Karaveli, Abdullah Bugrahan, Soytas, U., & Akinoglu, B. G. (2015). Comparison of large scale solar PV (photovoltaic) and nuclear power plant investments in an emerging market. Energy, 84, 656–665. https://doi.org/10.1016/j.energy.2015.03.025
  • K̈oppen, W. (1884). Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal zones of the Earth according to the duration of hot, moderate and cold periods and of the impac. Meteorologische Zeitschrift, 1, 215–226. https://doi.org/10.1127/0941-2948/2011/105
  • Labouret, A., & Villoz, M. (2010). Solar Photovoltaic Energy. The Institution of Engineering and Technology.
  • Mayer, J. N., Philipps, S., Hussein, N. S., Schlegl, T., & Senkpiel, C. (2015). Current and Future Cost of Photovoltaics. In Agora Energiewende. Retrieved from https://www.agora-energiewende.de/fileadmin2/Projekte/2014/Kosten-Photovoltaik2050/AgoraEnergiewende_Current_and_Future_Cost_of_PV_Feb2015_web.pdf
  • Mellit, A., Kalogirou, S. A., Hontoria, L., & Shaari, S. (2009). Artificial intelligence techniques for sizing photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 13(2), 406–419. https://doi.org/https://doi.org/10.1016/j.rser.2008.01.006
  • NREL. (2019). Best Research-Cell Efficiency Chart. Retrieved from NREL website: https://www.nrel.gov/pv/cell-efficiency.html
  • Ogulgonen, G., Ozden, T., Yardim, U., Turan, R., & Kincal, S. (2015). A low cost outdoor testing facility for detailed photovoltaic device performance characterization. Physica Status Solidi (C), 12(9–11), 1267–1271. https://doi.org/10.1002/pssc.201510110
  • Rubel, F., Brugger, K., Haslinger, K., & Auer, I. (2017). The climate of the European Alps: Shift of very high resolution KöppenGeiger climate zones 1800–2100. Meteorologische Zeitschrift, 26(2), 115–125. https://doi.org/10.1127/metz/2016/0816
  • Solar Power Europe. (2017). Digitalisation & Solar Task Force Report. In Solar Power Europe. Retrieved from https://www.solarpowereurope.org/wpcontent/uploads/2018/09/Digitalisation_and_Solar_report_SolarPower_Europe_MEDIUM_RES.pdf
  • Solar Power Europe. (2018). Global Market Outlook For Solar Power / 2018 - 2022. In Solar Power Europe. Retrieved from http://www.solarpowereurope.org/wp-content/uploads/2018/09/Global-Market-Outlook-2018-2022.pdf
  • United Nations. (2019). Sustainable Development Goals: Ensure access to affordable, reliable, sustainable and modern energy. Retrieved from https://www.un.org/sustainabledevelopment/energy/