Düşük Maliyetli Kenevir Biyosorbentler ile Sulu Çözeltiden Nikel İyonu Adsorpsiyonu

Bu çalışmada, arıtma prosesi maliyetini azaltmak için çevre dostu ve düşük maliyetli kenevir lifleri biyosorbent olarak kullanılarak nikel iyonu giderimi araştırılmıştır. Kenevir liflerinin safsızlıklarını gidermek için sodyum hidroksit ve sitrik asit ile kimyasal modifikasyon yapıldı. Kenevir liflerinin şartlandırılması sonucu elde edilen biyosorbentlerle Ni (II) iyonu adsorpsiyonuna pH ve başlangıç konsantrasyonunun etkileri incelenmiştir. Ayrıca kenevir biyosorbentlerinin (FTIR, XRD, SEM-EDS) karakterizasyon çalışması yapılarak yüzey morfolojisi ve özellikleri incelenmiştir. Elde edilen sonuçlara göre kenevir biyosorbentleri ile Ni (II) iyonu giderimi için optimum pH 4 olarak bulunmuştur. Optimum pH değerinde Ni (II) iyonu giderim verimi %57,34 olarak belirlenmiştir. Başlangıç konsantrasyonu etkisi incelendiğinde, konsantrasyon arttıkça giderim veriminin az da olsa arttığı tespit edilmiştir. Konsantrasyon 40 mg/L iken giderim verimi %61,1 olarak tespit edilmiştir.

Nickel Ion Adsorption from Aqueous Solution with Low-Cost Hemp Biosorbents

In this study, nickel ion removal was investigated by using environmentally friendly and low-cost hemp fibers as a biosorbent to reduce the treatment process cost. Chemical modification was done with sodium hydroxide and citric acid to remove the impurity of the hemp fibers. The effects of pH, and initial concentration on Ni (II) ion adsorption with biosorbents obtained as a result of conditioning of hemp fibers were investigated. In addition, the characterization study of hemp biosorbents (FTIR, XRD, SEM-EDS) was performed, and the surface morphology and properties were investigated. According to the results, optimum pH was found to be 4 for Ni (II) ion removal with hemp biosorbents. The Ni (II) ion removal efficiency at optimum pH was determined as 57.34%. When the effect of initial concentration was examined, it was determined that the removal efficiency increased slightly as the concentration increased. While the concentration was 40 mg/L, the removal efficiency was determined as 61.1%.

___

  • Anastopoulos, I., & Kyzas, G. Z. (2014). Agricultural peels for dye adsorption: A review of recent literature. Journal of Molecular Liquids, 200, 381–389. https://doi.org/https://doi.org/10.1016/j.molliq.2014.11.006
  • Arora, R. (2019). Adsorption of heavy metals-a review. Materials Today: Proceedings, 18(1), 4745–4750. https://doi.org/10.1016/j.matpr.2019.07.462
  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479. https://doi.org/https://doi.org/10.1016/S0043-1354(98)00475-8
  • Hasfalina, C. M., Maryam, R. Z., Luqman, C. A., & Rashid, M. (2010). The potential use of kenaf as a bioadsorbent for the removal of Copper and Nickel from single and binary aqueous solution. Journal of Natural Fibers, 7(4), 267–275. https://doi.org/10.1080/15440478.2010.527508
  • Kyzas, G. Z., & Kostoglou, M. (2014). Green Adsorbents for Wastewaters: A Critical Review. Materials (Basel, Switzerland), 7(1), 333–364. https://doi.org/10.3390/ma7010333
  • Kyzas, G. Z., Terzopoulou, Z., Nikolaidis, V., Alexopoulou, E., & Bikiaris, D. N. (2015). Low-cost hemp biomaterials for nickel ions removal from aqueous solutions. Journal of Molecular Liquids, 209(1), 209–218. https://doi.org/10.1016/j.molliq.2015.05.060
  • Marrot, B., Barrios-Martinez, A., Moulin, P., & Roche, N. (2004). Industrial wastewater treatment in a membrane bioreactor: A review. Environmental Progress, 23(1), 59–68. https://doi.org/https://doi.org/10.1002/ep.10001
  • Paduraru, C., & Tofan, L. (2002). Equilibrium studies for the sorption of metal ions onto hemp. Cellulose Chemistry and Technology, 36, 375–380.
  • Pejic, B., Vukcevic, M., Kostic, M., & Skundric, P. (2009). Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition. Journal of Hazardous Materials, 164(1), 146–153. https://doi.org/10.1016/j.jhazmat.2008.07.139
  • Srivastava, N. K., & Majumder, C. B. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of Hazardous Materials, 151(1), 1–8. https://doi.org/https://doi.org/10.1016/j.jhazmat.2007.09.101
  • Tofan, L., Teodosiu, C., Paduraru, C., & Wenkert, R. (2013). Cobalt (II) removal from aqueous solutions by natural hemp fibers: Batch and fixed-bed column studies. Applied Surface Science, 285(PARTA), 33–39. https://doi.org/10.1016/j.apsusc.2013.06.151
  • Vukčević, M., Pejić, B., Kalijadis, A., Pajić-Lijaković, I., Kostić, M., Laušević, Z., & Laušević, M. (2014). Carbon materials from waste short hemp fibers as a sorbent for heavy metal ions - Mathematical modeling of sorbent structure and ions transport. Chemical Engineering Journal, 235, 284–292. https://doi.org/10.1016/j.cej.2013.09.047
  • Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/https://doi.org/10.1016/j.biotechadv.2008.11.002
  • Zou, X., Fallah, J. El, Goupil, J.-M., Zhu, G., Valtchev, V., & Mintova, S. (2012). Green removal of aromatic organic pollutants from aqueous solutions with a zeolite–hemp composite. RSC Adv., 2(7), 3115–3122. https://doi.org/10.1039/C2RA01176J
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç