Derin Öğrenme Yöntemleri ile Bitki Yaprakları Üzerindeki Hastalıkların Sınıflandırılması

Teknolojik olarak ileriye gittiğimiz günümüz dünyasında tarımsal faaliyetlerin verimli hale getirilmesi her geçen gün daha da çok zaman harcıyoruz. Elimizdeki kaynakları teknolojik yöntemler ile destekleyerek bu harcadığımız zamanı kısaltabiliriz. Bilgisayarlı görü ve derin öğrenme yöntemlerinin etkin olarak işletilmesi ile eğitilen modelleri kullanarak yapacağımız her bir tahmin ile bitkinin hastalığını teşhis edebiliriz. Görüntü tabanlı sınıflandırma algoritmaları olan daha önceden farklı amaçlar için eğitilmiş modellerin bizim problemimiz için kullanıldığında ne gibi sonuçlar almışız onu inceliyor olacağız. Adına aktarımlı (transfer) öğrenme dediğimiz bu yöntem ve topladığımız veri setinin verdiği sonuçları, bize şimdiki çalışma ve gelecekteki çalışmalar için nasıl daha etkili yöntemlere ihtiyaç var sorusunun cevabını verecektir.

Deep Learning Based Plant Diseases Classification

In today’s world, where we move forward technologically, we spend more and more time to make agricultural activities efficient. We can shorten the time we spend by supporting the resources we have with technological methods. We can diagnose the disease of the plant with each prediction we make using models trained by the effective operation of computer vision and deep learning methods. We will be examining what results we have obtained when the models, which are image-based classification algorithms, were used for our problem, which were previously trained for different purposes. This method, which we call transfer learning, and the results of the dataset we collect, will give us the answer to the question of how more effective methods are needed for current and future studies.

___

  • Mohanty, S. P. (2016). Plant Science. Using Deep Learning for Image Based Plant Disease Detection.
  • Sk. Mahmudul Hassan, A. K. (2021). Electronics. Identification of Plant Leaf Diseases Using CNN and Transfer Learning Approach.
  • Ünal, Z. (2017). A Bibliographical Analysis. Smart Farming Becomes Even Smarter with Learning.
  • Vu, K. (2021, 27 September). Computer Vision in Agriculture [Blog yazısı]. Erişim adresi: https://www.kdnuggets.com/2021/09/computer-vision-agriculture.html
  • Lexi, A. (2020, 28 January). Image Classification with Pytorch Transfer Learning [Github]. Erişim adresi: https://github.com/LexiAM/ image-classification-with-pytorch-transfer-learning
  • Kızrak, A. (2019, 20 December). Ölçeklendirme ile CNN Modelinin Doğruluk ve Verimliliği Artırma: EfficientNet [Blog yazısı]. Erişim adresi: https://ayyucekizrak.medium.com/%C3%B6l%C3%A7eklendirme-ile-cnn-modelinin-do%C4%9Fruluk-ve-verimlili%C4%9Fini-art%C4%B1rma-efficientnet-cb6f2b6512de
  • Kızrak, A. (2018, 28 May). Derine Daha Derine: Evirişimli Sinir Ağları [Blog yazısı]. Erişim adresi: https://ayyucekizrak.medium.com/deri%CC%87ne-daha-deri%CC%87ne-evri%C5%9Fimli-sinir-a%C4%9Flar%C4%B1-2813a2c8b2a9#:~:text=VGG%2D16,1000%20s%C4%B1n%C4%B1fl%C4%B1%20softmax%20ba%C5%9Far%C4%B1m%C4%B1%20hesaplan%C4%B1r.
  • Çilek, Ş. (2021, 9 August). ResNet(Residual Network) Nedir? [Blog yazısı]. Erişim adresi: https://suhedacilek.medium.com/resnet-residual-network-nedir-49105e642566
  • Papers with Code. (2021, 12 February). DenseNet. Erişim adresi: https://paperswithcode.com/model/densenet?variant=densenet-161
  • Wikipedia. (2022, 8 September). AlexNet. Erişim adresi: https://en.wikipedia.org/wiki/AlexNet
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: 4
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç
Sayıdaki Diğer Makaleler

Açıklanabilir Yapay Zeka Destekli Evrişimsel Sinir Ağları Kullanılarak Maymun Çiçeği Deri Lezyonunun Sınıflandırılması

Korhan Deniz AKIN, Caglar GURKAN, Abdulkadir BUDAK, Hakan KARATAŞ

Gölcük/Isparta ve Yakın Çevresinde Yer Alan Kayaçların Doğal Radyoaktivite Özelliklerinin İncelenmesi

Osman ÇOBAN, M. Nuri DOLMAZ, Ezgi ERBEK-KIRAN, Ömer ELİTOK

Genelleştirilmiş Dışbükey Gövde Kombinasyonu Yaklaşımı

Selcan KOCABAS, Ali ÇALIŞKAN

Derin Evrişimli Sinir Ağlarını Kullanarak MRG Modalitesinde Alzheimer Hastalığının Sınıflandırılması ve Segmentasyonu

Furkan KARAKAYA, Caglar GURKAN, Abdulkadir BUDAK, Hakan KARATAŞ

Karar Ağaçları Kullanılarak Klinik Verilerle Covid-19 Enfeksiyonunun İncelenmesi

Fırat ORHANBULUCU, Fatma LATİFOĞLU

Gemilerde Rüzgar Türbini Uygulamasında Optimum Yer Seçimi İçin Bir Benzetim Çalışması: Tanker Gemisi Örneği

Buğra AKYOL, Kenan YİĞİT

4-Vynilbenzil Grubu Taşıyan Benzimidazol Fonksiyonelleştirilmiş PEPPSI tipi Pd(II)NHC Komplekslerinin Dizaynı, Sentezi, Karakterizasyonu ve Doğrudan Arilasyon Reaksiyonundaki Katalitik Aktivitesi

Semra DAŞGIN, Yetkin GÖK, Aydın AKTAŞ

Kama ile Destekli Elastik Tabakanın Temas Analizi

Mehmet BAKİOĞLU, Arcan YANIK, Ünal ALDEMİR

Biriktirme Süresinin Akımsız Nikel-Bor Kaplamaların Sertlik ve Korozyon Özelliklerine Etkisi

Yaren SARP, İbrahim USTA, Sezer TAN, Hasan ALGÜL, Mehmet UYSAL, Ahmet ALP

CT Modalitesinde U-Net Tabanlı Segmentasyon Ağlarını Kullanarak Pankreas Segmentasyonu: Karşılaştırmalı Bir Analiz

Alperen DERİN, Caglar GURKAN, Abdulkadir BUDAK, Hakan KARATAŞ