4-Vynilbenzil Grubu Taşıyan Benzimidazol Fonksiyonelleştirilmiş PEPPSI tipi Pd(II)NHC Komplekslerinin Dizaynı, Sentezi, Karakterizasyonu ve Doğrudan Arilasyon Reaksiyonundaki Katalitik Aktivitesi

Bu çalışma, 4-vinilbenzil grubunu içeren bir dizi benzimidazol fonksiyonelli PEPPSI (PEPPSI, Pyridine Enhanced Precatalyst Preparation Stabilization, and Initiation) tipi Pd(II)NHC (NHC, N-heterocyclic Carbene) kompleksinin sentezini ve karakterizasyonunu içerir. Bu kompleksler 4-vinilbenzil grubu taşıyan benzimidazolyum tuzları, paladyum klorür (PdCl2), baz olarak potasyum karbonat (K2CO3) ve 3-kloropiridinden sentezlendi. Tüm komplekslerin yapıları 1H NMR, 13C NMR ve FTIR spektroskopik teknikleri kullanılarak karakterize edildi. Karkterizasyon sonucu elde edilen veriler önerilen formüller ile tutarlıydı. Özellikle NMR spektrumlarında başlangıç materyali olarak kullanılan 4-vinilbenzil grubu taşıyan benzimidazolyum tuzlarına ait karakteristik proton ve karbon piklerinin gözlenmemesi, bunu yerine benzimidazolyum ligandının palladyum metaline koordinasyonu sonucu karbon NMR spektrumunda daha düşük alanda karben piklerinin varlığı komplekslerin oluşumunu kanıtlamaktadır. Ayrıca, tüm 4-vinil benzil grubu içeren benzimidazolyum fonsiyonelli PEPPSI tipi Pd(II)NHC komplekslerinin doğrudan arilasyon tepkimelerindeki katalitik aktiviteleri incelenmiştir. Aril bromürlerin, furan ve tiofen türevi bileşikler ile tepkimelerinde katalizör olarak kullanılan tüm komplekslerin bu reaksiyonlarda orta ve yüksek derecede aktif katalizörler oldukları görülmüştür.

Design, Synthesis, Characterization and Catalytic Activity in Direct Arylation Reaction of the Benzimidazole-Functionalized PEPPSI-type Pd(II)NHC Complexes bearing 4-Vynylbenzyl Group

This study includes the synthesis and characterization of a series of benzimidazole functional PEPPSI (PEPPSI, Pyridine Enhanced Precatalyst Preparation Stabilization, and Initiation) type Pd(II)NHC (NHC, N-heterocyclic Carbene) complexes containing the 4-vinylbenzyl group. These complexes were synthesized from benzimidazolium salts bearing 4-vinylbenzyl group, palladium chloride (PdCl2), potassium carbonate (K2CO3) and 3-chloropyridine as a base. The structures of all complexes were characterized using 1H NMR, 13C NMR, and FTIR spectroscopic techniques. The data obtained from characterization were consistent with the proposed formulas. In particular, the absence of characteristic proton and carbon peaks of benzimidazolium salts with 4-vinylbenzyl group used as starting material in NMR spectra, instead of the coordination of benzimidazolium ligand to palladium metal, the presence of carbene peaks in the downfield of the carbon NMR spectrum proves the formation of complexes. In addition, the catalytic activities of all PEPPSI type Pd(II)NHC complexes with benzimidazolium functionalities containing 4-vinylbenzyl groups in direct arylation reactions were investigated. All complexes used as catalysts in the responses of aryl bromides with furan and thiophene derivative compounds were found to be moderately and highly active catalysts in these reactions.

___

  • Abbot, V., Sharma, P., Dhiman, S., Noolvi, M. N., Patel, H. M., & Bhardwaj, V. (2017). Small hybrid heteroaromatics: Resourceful biological tools in cancer research. RSC advances, 7(45), 28313-28349.
  • Ackermann, L. (2011). Carboxylate-assisted transition-metal-catalyzed C− H bond functionalizations: mechanism and scope. Chemical reviews, 111(3), 1315-1345. Akita, Y., Inoue, A., Yamamoto, K., Ohta, A., Kurihara, T., & Shimizu, M. (1985). Palladium-catalyzed coupling reaction of chloropyrazines with indole. Heterocycles (Sendai), 23(9), 2327-2333.
  • Aktaş, A., Celepci, D. B., Gök, Y., & Aygün, M. (2018). 2‐Hydroxyethyl‐Substituted Pd‐PEPPSI Complexes: Synthesis, Characterization and the Catalytic Activity in the Suzuki‐Miyaura Reaction for Aryl Chlorides in Aqueous Media. ChemistrySelect, 3(35), 9974-9980.
  • Arduengo III, A. J., Harlow, R. L., & Kline, M. (1991). A stable crystalline carbene. Journal of the American Chemical Society, 113(1), 361-363.
  • Arduengo III, A. J., Goerlich, J. R., Krafczyk, R., & Marshall, W. J. (1998). 1, 3, 4, 5‐Tetraphenylimidazol‐2‐ylidene: The Realization of Wanzlick's Dream. Angewandte Chemie International Edition, 37(13‐14), 1963-1965.
  • Arıcı, H., Sündü, B., Fırıncı, R., Ertuğrul, E., Özdemir, N., Cetinkaya, B., ... & Günay, M. E. (2021). The synthesis of new PEPPSI-type N-heterocyclic carbene (NHC)-Pd (II) complexes bearing long alkyl chain as precursors for the synthesis of NHC-stabilized Pd (0) nanoparticles and their catalytic applications. Journal of Organometallic Chemistry, 934, 121633.
  • Beaupré, S., & Leclerc, M. (2013). PCDTBT: en route for low cost plastic solar cells. Journal of Materials Chemistry A, 1(37), 11097-11105.
  • Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S., & Sharma, P. (2015). Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. Rsc Advances, 5(20), 15233-15266.
  • Borah, D., Saha, B., Sarma, B., & Das, P. (2020). A new PEPPSI type N-heterocyclic carbene palladium (II) complex and its efficiency as a catalyst for Mizoroki-Heck cross-coupling reactions in water. Journal of Chemical Sciences, 132(1), 1-10.
  • Boztepe, C., Künkül, A., & Gürbüz, N. (2020). Hydrogel supported vinylimidazole based PEPPSI-Pd-NHC catalysts: The catalytic activities in Heck and Suzuki-Miyaura coupling reactions. Journal of Molecular Structure, 1209, 127948.
  • Cazin, C.S.J. (2011). N-heterocyclic Carbenes in Transition Metal Catalysis, Springer, New York.
  • Crabtree, R. H. (2006). Some chelating C-donor ligands in hydrogen transfer and related catalysis. Journal of organometallic chemistry, 691(14), 3146-3150.
  • Danopoulos, A. A., Simler, T., & Braunstein, P. (2019). N-heterocyclic carbene complexes of copper, nickel, and cobalt. Chemical reviews, 119(6), 3730-3961.
  • Daşgın, S., Gök, Y., Celepci, D. B., Taslimi, P., Izmirli, M., Aktaş, A., & Gülçin, İ. (2021). Synthesis, characterization, crystal structure and bioactivity properties of the benzimidazole-functionalized PEPPSI type of Pd (II) NHC complexes. Journal of Molecular Structure, 1228, 129442.
  • Deng, P., Liu, L., Ren, S., Li, H., & Zhang, Q. (2012). N-acylation: an effective method for reducing the LUMO energy levels of conjugated polymers containing five-membered lactam units. Chemical Communications, 48(55), 6960-6962.
  • Divya, K .R., Gari, G. L., Teja, G., Yamini, A.P. & Padmavathi, V. (2019). Chem. Biodiver.
  • Eicher, T., Hauptmann, S., & Speicher, A. (2013). The chemistry of heterocycles: structures, reactions, synthesis, and applications. John Wiley & Sons.
  • Erdemir, F., Barut Celepci, D., Aktaş, A., & Gök, Y. (2019). 2‐hydroxyethyl‐substituted (NHC) PdI2 (pyridine)(Pd‐PEPPSI) Complexes: Synthesis, Characterization and the Catalytic Activity in the Sonogashira Cross‐coupling Reaction. ChemistrySelect, 4(19), 5585-5590.
  • Erdoğan, H., Aktaş, A., Gök, Y., & Sarı, Y. (2018). N-Propylphthalimide-substituted bis-(NHC) PdX2 complexes: synthesis, characterization and catalytic activity in direct arylation reactions. Transition Metal Chemistry, 43(1), 31-37.
  • Filimonov, S. N., Liu, W., & Tkatchenko, A. (2017). Molecular seesaw: Intricate dynamics and versatile chemistry of heteroaromatics on metal surfaces. The Journal of Physical Chemistry Letters, 8(6), 1235-1240.
  • Fortman, G. C., & Nolan, S. P. (2011). N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. Chemical Society Reviews, 40(10), 5151-5169.
  • Glorius, F. (2006). N-heterocyclic carbenes in catalysis—An introduction.
  • Gokanapalli, A., Motakatla, V. K. R., & Peddiahgari, V. G. R. (2020). Benzimidazole bearing Pd–PEPPSI complexes catalyzed direct C2‐arylation/heteroarylation of N‐substituted benzimidazoles. Applied Organometallic Chemistry, 34(10), e5869.
  • Gök, Y., Aktaş, A., Erdoğan, H., & Sarı, Y. (2018). New 4-vinylbenzyl-substituted bis (NHC)-Pd (II) complexes: Synthesis, characterization and the catalytic activity in the direct arylation reaction. Inorganica Chimica Acta, 471, 735-740.
  • Hagui, W., Doucet, H., & Soulé, J. F. (2019). Application of palladium-catalyzed C (sp2)–H bond arylation to the synthesis of polycyclic (hetero) aromatics. Chem, 5(8), 2006-2078.
  • Herrmann, W. A. (2002). N‐heterocyclic carbenes: a new concept in organometallic catalysis. Angewandte Chemie International Edition, 41(8), 1290-1309.
  • Herrmann, W. A., Schütz, J., Frey, G. D., & Herdtweck, E. (2006). N-heterocyclic carbenes: synthesis, structures, and electronic ligand properties. Organometallics, 25(10), 2437-2448.
  • Hopkinson, M. N., Richter, C., Schedler, M., & Glorius, F. (2014). An overview of N-heterocyclic carbenes. Nature, 510(7506), 485-496.
  • İmik, F., Yaşar, S., & Özdemir, İ. (2019). Synthesis and investigation of catalytic activity of phenylene–And biphenylene bridged bimetallic Palladium-PEPPSI complexes. Journal of Organometallic Chemistry, 896, 162-167.
  • Jiao, L. Y., Yin, X. M., Liu, S., Zhang, Z., Sun, M., & Ma, X. X. (2020). 1, 2, 3-Triazol-5-ylidene bearing a pyridine auxiliary based bidentate PEPPSI type palladium (II) complex: Synthesis, structure, and application in the direct arylation of pyridine N-oxide. Catalysis Communications, 135, 105889.
  • Kim, D., Choi, G., Kim, W., Kim, D., Kang, Y. K., & Hong, S. H. (2021). The site-selectivity and mechanism of Pd-catalyzed C (sp 2)–H arylation of simple arenes. Chemical science, 12(1), 363-373.
  • Lvov, A. G., Khusniyarov, M. M., & Shirinian, V. Z. (2018). Azole-based diarylethenes as the next step towards advanced photochromic materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 36, 1-23.
  • Mao, S., Shi, X., Soulé, J. F., & Doucet, H. (2020). Direct Arylations of Heteroarenes with Benzenesulfonyl Chlorides Using Pd/C Catalyst. European Journal of Organic Chemistry, 2020(1), 91-97.
  • Mishra, K., & Lee, Y. R. (2019). Highly synergistic effect of bifunctional Ru-rGO catalyst for enhanced hydrogenative-reductive benzylation of N-heteroaromatics. Journal of Catalysis, 376, 77-86.
  • O’Brien, C. J., & Kantchev, E. A. B. (2006). C. 35 Valente, N. Hadei, GA Chass, A. Lough, AC Hopkinson and M. G. Organ. Chem. Eur. J, 12, 4743.
  • Organ, M. G., Chass, G. A., Fang, D. C., Hopkinson, A. C., & Valente, C. (2008). Pd-NHC (PEPPSI) complexes: Synthetic utility and computational studies into their reactivity. Synthesis, 2008(17), 2776-2797.
  • Öfele, K. (1968). 1, 3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer Übergangsmetall-carben-komplex. Journal of Organometallic Chemistry, 12(3), P42-P43.
  • Price, G. A., Hassan, A., Chandrasoma, N., Bogdan, A. R., Djuric, S. W., & Organ, M. G. (2017). Pd‐PEPPSI‐IPent‐SiO2: A Supported Catalyst for Challenging Negishi Coupling Reactions in Flow. Angewandte Chemie, 129(43), 13532-13535.
  • Reddy, M. V. K., Anusha, G., & Reddy, P. V. G. (2020). Sterically enriched bulky 1, 3-bis (N, N′-aralkyl) benzimidazolium based Pd-PEPPSI complexes for Buchwald–Hartwig amination reactions. New Journal of Chemistry, 44(27), 11694-11703.
  • Roger, J., Požgan, F., & Doucet, H. (2009). Ligand-less palladium-catalyzed direct 5-arylation of thiophenes at low catalyst loadings. Green Chemistry, 11(3), 425-432.
  • Sarı, Y., Aktaş, A., Taslimi, P., Gök, Y., & Gulçin, İ. (2018). Novel N‐propylphthalimide‐and 4‐vinylbenzyl‐substituted benzimidazole salts: Synthesis, characterization, and determination of their metal chelating effects and inhibition profiles against acetylcholinesterase and carbonic anhydrase enzymes. Journal of Biochemical and Molecular Toxicology, 32(1), e22009.
  • Shi, S., Lei, P., & Szostak, M. (2017). Pd-PEPPSI: A General Pd-NHC Precatalyst for Suzuki–Miyaura Cross-Coupling of Esters by C–O Cleavage. Organometallics, 36(19), 3784-3789.
  • Slimani, I., Mansour, L., Özdemir, I., Gürbüz, N., & Hamdi, N. (2021). Synthesis, characterization and catalytic activity of PEPPSI-type palladium–NHC complexes. Inorganica Chimica Acta, 515, 120043.
  • Sonar, P., Singh, S. P., Li, Y., Soh, M. S., & Dodabalapur, A. (2010). A low‐bandgap diketopyrrolopyrrole‐benzothiadiazole‐based copolymer for high‐mobility ambipolar organic thin‐film transistors. Advanced materials, 22(47), 5409-5413.
  • Song, A. X., Zeng, X. X., Ma, B. B., Xu, C., & Liu, F. S. (2020). Direct (hetero) arylation of heteroarenes catalyzed by unsymmetrical Pd-PEPPSI-NHC complexes under mild conditions. Organometallics, 39(19), 3524-3534.
  • Šimůnek, O., Rybáčková, M., Svoboda, M., & Kvíčala, J. (2020). Synthesis, catalytic activity and medium fluorous recycle of fluorous analogues of PEPPSI catalysts. Journal of Fluorine Chemistry, 236, 109588.
  • Tu, T., Malineni, J., Bao, X., & Doetz, K. H. (2009). A Lutidine‐Bridged Bis‐Perimidinium Salt: Synthesis and Application as a Precursor in Palladium‐Catalyzed Cross‐Coupling Reactions. Advanced Synthesis & Catalysis, 351(7‐8), 1029-1034.
  • Türker, F., Bereket, İ., Celepci, D. B., Aktaş, A., & Gök, Y. (2020). New Pd-PEPPSI complexes bearing meta-cyanobenzyl-Substituted NHC: Synthesis, characterization, crystal structure and catalytic activity in direct C–H arylation of (Hetero) arenes with aryl bromides. Journal of Molecular Structure, 1205, 127608.
  • Usta, H., Facchetti, A., & Marks, T. J. (2011). n-Channel semiconductor materials design for organic complementary circuits. Accounts of chemical research, 44(7), 501-510.
  • Valente, C., Pompeo, M., Sayah, M., & Organ, M. G. (2014). Carbon–Heteroatom Coupling Using Pd-PEPPSI Complexes. Organic Process Research & Development, 18(1), 180-190.
  • Wanzlick, H. W., & Schönherr, H. J. (1968). Direct synthesis of a mercury salt‐carbene complex. Angewandte Chemie International Edition in English, 7(2), 141-142.
  • Wei, J., Cao, B., Tse, C. W., Chang, X. Y., Zhou, C. Y., & Che, C. M. (2020). Chiral cis-iron (ii) complexes with metal-and ligand-centered chirality for highly regio-and enantioselective alkylation of N-heteroaromatics. Chemical science, 11(3), 684-693.
  • Zhang, Y., Han, F., Zhang, M., Zhang, H., Li, Y., Wang, R., ... & Liu, G. (2020). Highly active Pd-PEPPSI complexes for Suzuki-Miyaura cross-coupling of aryl chlorides: an investigation on the effect of electronic properties. Chemical Research in Chinese Universities, 36(5), 859-864.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç
Sayıdaki Diğer Makaleler

İskemik İnme Lezyon Segmentasyonunda Segmentasyon Ağlarının ve Kayıp Fonksiyonlarının Etkilerinin Analizi

Ahmet Furkan BAYRAM, Alperen DERİN, Caglar GURKAN, Abdulkadir BUDAK, Hakan KARATAŞ

Beceri Temelli Matematik Sorularının Orantısal Akıl Yürütme Problem Türlerine Göre İncelenmesi

Merve ÇELENLİ, Zehra TAŞPINAR-ŞENER, Mustafa Zeki AYDOĞDU

Gemilerde Rüzgar Türbini Uygulamasında Optimum Yer Seçimi İçin Bir Benzetim Çalışması: Tanker Gemisi Örneği

Buğra AKYOL, Kenan YİĞİT

İş Memnuniyeti Faktörlerini Belirlemek ve Analiz Etmek için Çevrimiçi Çalışan Değerlendirmelerini Kullanan ilgili Makine Öğrenmesi ve Topluluk Öğrenmesi Tabanlı Yöntem

Ali ÖZDEMİR, Aytuğ ONAN, Vildan ÇINARLI ERGENE

Genelleştirilmiş Dışbükey Gövde Kombinasyonu Yaklaşımı

Selcan KOCABAS, Ali ÇALIŞKAN

Açıklanabilir Yapay Zeka Destekli Evrişimsel Sinir Ağları Kullanılarak Maymun Çiçeği Deri Lezyonunun Sınıflandırılması

Korhan Deniz AKIN, Caglar GURKAN, Abdulkadir BUDAK, Hakan KARATAŞ

İkinci Dereceden İnterpolasyon ile Nöronda Kayıp Bilginin Yeniden Hesabı

Vedat Burak YÜCEDAĞ, İlker DALKIRAN

Derin Öğrenme Yöntemleri ile Bitki Yaprakları Üzerindeki Hastalıkların Sınıflandırılması

Furkan Alp ESEN, Aytuğ ONAN

NdFeB esaslı kalıcı manyetik alaşımların manyetik özelliklerine uygulanan ısıl işlemdeki sürenin etkisi

Muhammed Fatih KILIÇASLAN, Yasin YILMAZ, Bekir AKGÜL

Böbrek Hastalıkları için Açıklanabilir Yapay Zeka Destekli Derin Öğrenmeye Dayalı Bir Tespit ve Tahmin Modeli

Ahmet Furkan BAYRAM, Caglar GURKAN, Abdulkadir BUDAK, Hakan KARATAŞ