Çalışanların Gürültü Maruziyetini Azaltmak için Otomotiv Sac Şekillendirme Pres Hattında Ergonomik Bir Ses Yalıtım Sistemi Uygulaması

Sac parça üretiminde kullanılan pres hatları otomotiv endüstrisindeki en yüksek gürültü kaynakları arasındadır. OSHA (Mesleki Güvenlik ve Sağlık Örgütü) tarafından getirilen gürültü limitleri şirketleri çalışanlarının bu yüksek şiddetteki gürültüden uzak tutmaya zorlamaktadır. Gürültü güvenliği için en ergonomik ve etkili yöntem gürültüyü kaynağında engellemektir. Bu çalışmada, Renault Türkiye otomotiv fabrikasının bir pres hattı, pres atölyesi ortamının konforunu ve ergonomisini geliştirmek için yeni bir köpük çekirdekli sandviç yapısı ile tamamen kapatılarak ergonomik bir gürültü önleme uygulaması gerçekleştirilmiştir. Üç farklı kapatma tasarımı denenmiştir: a) Dört cepheden çevresel olarak kapatılmış gürültü önleme sistemi, b) Tavanı da kapatılan beş cepheli sistem ve c) açıklıkları azaltılmış beş cepheli kapatma sistemi. Her üç durumda da, pres atölyesinde gürültü seviyeleri ölçülmüştür. Tüm durumlarda gürültü seviyesi 85 dB (A) altına düşürülmüştür. Geliştirilen gürültü yalıtım sistemlerinin performansı iki farklı sac parçanın seri üretimi esnasında ölçümlenerek gözlemlenmiştir. Pres atölyesi gürültü seviyesini düşürmek için uygulama yapılan pres hattının beş cepheden kapatılmasının gerektiği tespit edilmiştir. Sadece dört yan cepheli kapatma sisteminin diğer ikisine göre daha başarısız olduğu görülmüştür. Beş cepheli kapatma sisteminde küçük açıkların dahi iyileştirilmesinin ses yalıtımına önemli katkısı olduğu tespit edilmiştir.

An Ergonomically Sound Encapsulating System Application in an Automotive Stamping Press Line for Reducing Employee Noise Exposure

Stamping press lines are among the highest noise sources in the automotive industry. The noise limits imposed by OSHA (OccupationalSafety and Health Organization) force companies to keep employees away from these high-decibel noises. The most ergonomic andeffective program for noise safety is to block the noise at the source. In this study, a press line of the Renault-Turkey automotive plantwas enclosed with a novel foam-core sandwich structure to improve the comforts and ergonomics of the stamping press workshopenvironment. Three different encapsulating cases were applied: four sides circumferentially closed with soundproofing walls, five sidesencapsulated with a closed top, and a gap-reduced case. For all three cases, the sound levels were measured in the stamping pressworkshop. The sound levels were reduced below 85 dB (A) in all cases. The performance of the encapsulating system was observedwhile producing two different parts. It was determined that this type of stamping press line should be encapsulated on all five sides toreduce the stamping workshop noise level. The four lateral sides’ sound barriers were not sufficient to soundproof the press line. Thesmall gaps and the die changing doors were very important in the all-five-sides encapsulated case.

___

  • 1) Brink, L. L., Talbott, E. O., Altonburks, J., Palmer, C. V. 2002. Changes over time in audiometric thresholds in a group of automobile stamping and assembly workers with a hearing conservation program. American Industrial Hygiene Association Journal, 63(4), 482–487. https://doi.org/10.1080/15428110208984737
  • 2) Mohammadi, G. 2008. Hearing conservation programs in selected metal fabrication industries. Applied Acoustics, 69(4), 287–292. https://doi.org/10.1016/j.apacoust.2006.12.002
  • 3) Noweir, M. H., Bafail, A. O., Jomoah, I. M. 2014. Noise pollution in metalwork and woodwork industries in the kingdom of Saudi Arabia. International Journal of Occupational Safety and Ergonomics, 20(4), 661–670. https://doi.org/10.1080/10803548.2014.11077068
  • 4) Arezes, P. M., Bernardo, C. A., Mateus, O. A. 2012. Measurement strategies for occupational noise exposure assessment: A comparison study in different industrial environments. International Journal of Industrial Ergonomics, 42(1). https://doi.org/10.1016/j.ergon.2011.10.005
  • 5) Berger, E. H. 1983. Laboratory Attenuation of Earmuffs and Earplugs Both Singly and in Combination. American Industrial Hygiene Association Journal, 44(5), 321–329. https://doi.org/10.1080/15298668391404905
  • 6) Brühl, P., Ivarsson, A., Toremalm, N. G. 1994. Noise-induced Hearing Loss in an Automobile Sheet-metal Pressing Plant: A Retrospective Investigation Covering 25 Years. Scandinavian Audiology, 23(2), 83–91. https://doi.org/10.3109/01050399409047490
  • 7) Brueck, S. E., Panaccio, M. P., Stancescu, D., Woskie, S., Estill, C., Waters, M. 2013. Noise exposure reconstruction and evaluation of exposure trends in two large automotive plants. Annals of Occupational Hygiene, 57(9), 1091–1104. https://doi.org/10.1093/annhyg/met035
  • 8) Hsu, Y. L., Huang, C. C., Yo, C. Y., Chen, C. J., Lien, C. M. 2004. Comfort evaluation of hearing protection. International Journal of Industrial Ergonomics, 33(6), 543–551. https://doi.org/10.1016/j.ergon.2004.01.001
  • 9) Bockstael, A., De Bruyne, L., Vinck, B., Botteldooren, D. 2013. Hearing protection in industry: Companies’ policy and workers’ perception. International Journal of Industrial Ergonomics, 43(6), 512–517. https://doi.org/10.1016/j.ergon.2012.08.009
  • 10) Moreland, J. B., Minto, R. F. 1976. An example of in-plant noise reduction with an acoustical barrier. Applied Acoustics, 9(3), 205– 214. https://doi.org/10.1016/0003-682X(76)90018-9
  • 11) Sanders, M.S., McCormick, E. J. 1987. Human Factors in Engineering and Design. NewYork: McGraw-Hill.
  • 12) Iasnicu, I. S. 2013. Composite materials containing textile soundproofing. Bul. Univ. Pet. – Gaze Ploiesti, 65, 91–97.
  • 13) Rodríguez-Pérez, M. A. 2005. Crosslinked polyolefin foams: production, structure, properties, and applications. Adv. Polym. Sci., 184, 97–126.
  • 14) Eaves, D. (Ed.). 2004. Hand book of polymer foams. Rapra Technology Limited.
  • 15) Shimizu, T., Koizumi, S. 2015. Study of the compatibility between sound insulation performance and ventilation performance in gaps by installing nonwoven fabrics. Building and Environment, 94(P1), 335–343. https://doi.org/10.1016/j.buildenv.2015.08.020
  • 16) Asakura, T., Sakamoto, S. 2013. Improvement of sound insulation of doors or windows by absorption treatment inside the peripheral gaps. Acoustical Science and Technology, 34(4), 241–252. https://doi.org/10.1250/ast.34.241
  • 17) Radičević, B., Petrović, Z., Todosijević, S., Petrović, Z. 2012. Design of Noise Protection of Industrial Plants- Case Study of a Plywood Factory. In University of Nis Faculty of Occupational Safety, “Politechnica” University of Timisoara Faculty of Mechanical Engineering, in: 23rd National Conference and 4th International Conference Noise and Vibration (pp. 17–19). Retrieved from http://www.mfkv.kg.ac.rs/urbanoise/media/1210 Nis Radicevic 71-75.pdf
  • 18) Moreland, J. B. 1984. In-plant noise-control with acoustical barriers. Noise Control Engineering Journal, 23, 106–106.
  • 19) Asuero, A. G., Sayago, A., González, A. G. 2006. The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766