Farklı Türdeki Betonların Kütle Zayıflatma Katsayılarının Monte Carlo Metodu ile Belirlenmesi

Zırhlanma ve radyasyondan korunma medikal ve tarım sektöründen tüketim ürünlerine kadar oldukça fazla sayıda alan için oldukça önemli bir konu başlığıdır. Bu çalışmada nükleer teknoloji, radyasyondan korunma ve medikal tıp alanında potansiyel kullanıma sahip betonların kütle azaltma katsayılarını, µ/ρ, farklı foton enerjilerinde MCNPX (versiyon 2.6.0) Monte Carlo kodu kullanılarak hesaplanmaktadır. Foton enerjisini değiştirerek betonların kütle azaltma katsayıları için kayda değer farklılıklar kaydedilmiştir. MCNPX sonuçları mevcut deneysel araştırmalar ve teorik XCOM sonuçları ile karşılaştırılmış ve iyi bir uyum gözlenmiştir. Bu çalışma, MCNPX simülasyon yönteminin, gama etkileşiminin araştırılmasında alternatif bir yöntem olarak kullanılacak uygun bir yöntem olduğunu göstermektedir ve radyasyon dozimetresi ve nükleer teknoloji alanında oldukça faydalı materyaller içermektedir.

Determination of Mass Attenuation Coefficients of Different Types of Concretes using Monte Carlo Method

Shielding and radiation protection are important subjectsfor various areas ranging from medical and agricultural sectors to consumerproducts. As such, it is a branch of science and technology, wherein radiation exposure to the receptor is reduced by shielding. Inthis study mass attenuation coefficients, µ/ρ for some concrete with potential applications in nuclear technology and radiationprotection as well as medical physics have been calculated using MCNPX (version 2.4.0) at different photon energy levels.Appreciable variations are noted for mass attenuation coefficients of the concrete by the changes in the photon energy. The MCNPXresults are compared with available experimental investigations and theoretical XCOM results, and good agreement is beingobserved. Present study indicates that MCNPX simulation method is suitable method to be used as an alternative method for theinvestigation of gamma interaction and would very useful materials for different energies for radiation dosimetry, medical andnuclear technology.

___

  • AlMateri, M., Agar, O., Altunsoy, E. E., Kilicoglu, O., Sayyed, M. I., & Tekin, H. O. (2019). Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies. Results in Physics.
  • Bashter, I. I. (1997). Calculation of radiation attenuation coefficients for shielding concretes. Annals of Nuclear Energy, 24(17), 1389–1401.
  • Berger, M. (2010). XCOM: photon cross sections database. Http://Www. Nist. Gov/Pml/Data/Xcom/Index. Cfm.
  • Demir, N., Tarim, U. A., Popovici, M.-A., Demirci, Z. N., Gurler, O., & Akkurt, I. (2013). Investigation of mass attenuation coefficients of water, concrete and bakelite at different energies using the FLUKA Monte Carlo code. Journal of Radioanalytical and Nuclear Chemistry, 298(2), 1303–1307.
  • Dong, M. G., Agar, O., Tekin, H. O., Kilicoglu, O., Kaky, K. M., & Sayyed, M. I. (2019). A comparative study on gamma photon shielding features of various germanate glass systems. Composites Part B: Engineering.
  • Hubbell, J. H. (1999). Review of photon interaction cross section data in the medical and biological context. Physics in Medicine & Biology, 44(1), R1.
  • Issa, S. A., Saddeek, Y. B., Sayyed, M. I., Tekin, H. O., & Kilicoglu, O. (2019). Radiation shielding features using MCNPX code and mechanical properties of the PbONa2OB2O3CaOAl2O3SiO2 glass systems. Composites Part B: Engineering, 167, 231– 240.
  • Issa, S. A., Tekin, H. O., Elsaman, R., Kilicoglu, O., Saddeek, Y. B., & Sayyed, M. I. (2019). Radiation shielding and mechanical properties of Al2O3-Na2O-B2O3-Bi2O3 glasses using MCNPX Monte Carlo code. Materials Chemistry and Physics, 223, 209– 219.
  • Singh, V. P., & Badiger, N. M. (2013). Study of mass attenuation coefficients, effective atomic numbers and electron densities of carbon steel and stainless steels. Radioprotection, 48(3), 431–443.
  • Singh, Vishwanath P., Ali, A. M., Badiger, N. M., & El-Khayatt, A. M. (2013). Monte Carlo simulation of gamma ray shielding parameters of concretes. Nuclear Engineering and Design, 265, 1071–1077.
  • Singh, Vishwanath P., & Badiger, N. M. (2013). Study of effective atomic numbers and electron densities, kerma of alcohols, phantom and human organs, and tissues substitutes. Nuclear Technology and Radiation Protection, 28(2), 137–145.
  • Singh, Vishwanath P., Medhat, M. E., & Badiger, N. M. (2014). Utilization of Geant4 Monte Carlo simulation method for studying attenuation of photons in normal and heavy concretes at high energy values. Journal of Radioanalytical and Nuclear Chemistry, 300(1), 325–331.
  • Tekin, H. O., Altunsoy, E. E., Ozturk, F. C., Kilicoglu, O., & Sayyed, M. I. (2018). Gamma-ray attenuation properties of boron carbide in radiological energy range using MCNPX code. In AIP Conference Proceedings (Vol. 2042, p. 020059). AIP Publishing.
  • Tekin, H. O., Kavaz, E., Altunsoy, E. E., Kilicoglu, O., Agar, O., Erguzel, T. T., & Sayyed, M. I. (2019). An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses. Ceramics International.
  • Tekin, H. O., Kilicoglu, O., Kavaz, E., Altunsoy, E. E., Almatari, M., Agar, O., & Sayyed, M. I. (2019). The investigation of gamma-ray and neutron shielding parameters of Na2O-CaO-P2O5-SiO2 bioactive glasses using MCNPX codewe. Results in Physics.
  • Tekin, H. O., Sayyed, M. I., Altunsoy, E. E., & Manici, T. (2017). Shielding properties and effects of WO3 and PbO on mass attenuation coefficients by using MCNPX code. Dig. J. Nanomater. Biostruct, 12(3), 861–867.
  • Tekin, H. O., Sayyed, M. I., Kilicoglu, O., Karahan, M., Erguzel, T. T., Kara, U., & Konuk, M. (2018). Calculation of gammaray attenuation properties of some antioxidants using Monte Carlo simulation method. Biomedical Physics & Engineering Express, 4(5), 057001.
  • Vijayakumar, R., Rajasekaran, L., & Ramamurthy, N. (2001). Effective atomic numbers for photon energy absorption of some low-Z substances of dosimetric interest. Radiation Physics and Chemistry, 62(5–6), 371–377.