Al/Organometalik Kompleks/p-Si Yapısının Elektriksel Özelliklerinin İncelenmesi

Organometalik kompleksi (OMcomplex) arayüzey tabakası olarak p-Si üzerinde ince bir film olarak biriktirmek için döndürmeli kaplama kullanıldı. Al/OMcomplex/p-Si Schottky diyot yapısı gerekli işlemlerden sonra oda sıcaklığında elde edilmiştir. Arayüz katmanlı Schottky diyotun Akım-Gerilim (I-V) ve Kapasitans-Gerilim (C-V) ölçümleri diyotun karakteristik parametrelerini hesaplamak için kullanıldı. I-V okumalarından bariyer yüksekliği (Φb0) ve idealite faktörü (n) hesaplandı ve sonuçlar sırasıyla 0.797 eV ve 1.615 oldu. Seri direnç (Rs), Cheung ve Norde fonksiyonları ile bulunarak karşılaştırıldı. Ayrıca 10 kHz ile 1 MHz frekans aralığında yapılan C-V ölçümlerinden doping yoğunluğu (Na) değerleri ve engel yüksekliği bulunmuş ve I-V ve C-V gözlemlerinden ulaşılan Φb0 değerleri karşılaştırılmıştır. I-V ve C-V den elde edilen engel yüksekliği değerlerinin farklılığı, engel yüksekliğinin homojen olmayışı, arayüzey tabakasının varlığı, arayüzey tabakasının kalınlığı ve seri direnç etkilerinin yanı sıra her iki yöntemin farklı tabiatına atfedilmiştir.

Structure of Al/Organometallic Complex/p-Si Investigation of Electrical Properties

Spin coating was used to deposit the interfacial layer of the organometallic complex (OM complex) as a thin film on p-Si. Al/OM complex/p-Si Schottky diode structure was achieved at room temperature after the required procedures. Current-Voltage (I-V) and Capacitance-Voltage (C-V) measurements of an interface-layered Schottky diode were used to compute the diode's characteristic parameters. Among the I-V readings, the barrier height (Φb0) and ideality factor (n) were computed, and the results were 0.797 eV and 1.615, respectively. The series resistance (Rs) was found and compared with the Cheung and Norde functions. Additionally, doping density (Na) values and barrier height were found out from C-V measurements in the frequency range of 10 kHz to 1 MHz, and the Φb0 values from I-V and C-V observations were compared. The difference in the barrier height values obtained from I-V and C-V was attributed to the inhomogeneity of the barrier height, the presence of the interfacial layer, the thickness of the interface layer and the series resistance effect, as well as the different nature of both methods.

___

  • Türüt, A. (2020). On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish Journal of Physics, 44(4), 302-347.
  • Shirota, Y. (2000). Organic materials for electronic and optoelectronic devicesBasis of a presentation given at Materials Chemistry Discussion No. 2, 13–15 September 1999, University of Nottingham, UK. Journal of Materials Chemistry, 10(1), 1-25.
  • Gupta, R. K., Ghosh, K., & Kahol, P. K. (2009). Fabrication and electrical characterization of Schottky diode based on 2-amino-4, 5-imidazoledicarbonitrile (AIDCN). Physica E: Low-Dimensional Systems and Nanostructures, 41(10), 1832-1834.
  • Rajesh, K. R., & Menon, C. S. (2007). Study on the device characteristics of FePc and FePcCl organic thin film Schottky diodes: Influence of oxygen and post deposition annealing. Journal of non-crystalline solids, 353(4), 398-404.
  • Güllü, Ö., & Türüt, A.(2008). Photovoltaic and electronic properties of quercetin/p-InP solar cells. Solar Energy materials and Solar cells, 92(10), 1205-1210.
  • Temirci, C., Gülcan, M., Goksen, K., & Sönmez, M. (2011). Metal/semiconductor contact properties of Al/Co (II) complex compounds. Microelectronic engineering, 88(1), 41-45.
  • Gunduz, B., Yahia, I. S., & Yakuphanoglu, F. (2012). Electrical and photoconductivity properties of p-Si/P3HT/Al and p-Si/P3HT: MEH-PPV/Al organic devices: Comparison study. Microelectronic Engineering, 98, 41-57.
  • Antohe, S., Tomozeiu, N., & Gogonea, S. (1991). Properties of the Organic‐on‐Inorganic Semiconductor Barrier Contact Diodes In/PTCDI/p‐Si and Ag/CuPc/p‐Si. physica status solidi (a), 125(1), 397-408.
  • Rajesh, K. R., & Menon, C. S. (2007). Study on the device characteristics of FePc and FePcCl organic thin film Schottky diodes: Influence of oxygen and post deposition annealing. Journal of non-crystalline solids, 353(4), 398-404.
  • Ashford, D. L., Brennaman, M. K., Brown, R. J., Keinan, S., Concepcion, J. J., Papanikolas, J. M., ... & Meyer, T. J. (2015). Varying the electronic structure of surface-bound ruthenium (II) polypyridyl complexes. Inorganic Chemistry, 54(2), 460-469.
  • Ilhan, S. (2008). Preparation and characterization of binuclear CuII complexes derived from diamines and dialdehydes. Journal of Coordination Chemistry, 61(18), 2884-2895.
  • Sánchez-Vergara, M. E., González-Aranzábal, S. A., Sauceda-Arriaga, M. A., Ortiz, A., Alvarez, J. R., & García-Montalvo, V. (2010). Electrical and optical properties of (PPh4) 2 [Fe (CN) 5NO] non-crystalline thin films prepared with the vacuum thermal evaporation technique. Journal of non-crystalline solids, 356(4-5), 244-249.
  • MK, C. J. J. J. B., & Iha, H. P. P. A. M. (2009). NY Templeton JL Meyer TJ Acc. Chem. Res, 42, 1954-1965.
  • Beer, P. D., & Cadman, J. (2000). Electrochemical and optical sensing of anions by transition metal based receptors. Coordination Chemistry Reviews, 205(1), 131-155.
  • Argazzi, R., Iha, N. Y. M., Zabri, H., Odobel, F., & Bignozzi, C. A. (2004). Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coordination Chemistry Reviews, 248(13-14), 1299-1316.
  • Kapilashrami, M., Zhang, Y., Liu, Y. S., Hagfeldt, A., & Guo, J. (2014). Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chemical reviews, 114(19), 9662-9707.
  • Fakharuddin, A., Jose, R., Brown, T. M., Fabregat-Santiago, F., & Bisquert, J. (2014). A perspective on the production of dye-sensitized solar modules. Energy & Environmental Science, 7(12), 3952-3981. [18] B. O’Regan, M. Gratzel, Nature 353 (1991) 737.
  • R.Koeppe, N.S.Sariciftci, P.A.Troshin, R.N.L.Yubovskaya, Applied Physics Letters 87 (2005) 244102.
  • Yakuphanoglu, F. (2007). Electronic and photovoltaic properties of Al/p-Si/copper phthalocyanine photodiode junction barrier. Solar energy materials and solar cells, 91(13), 1182-1186.
  • Ocak, Y. S., Ebeoğlu, M. A., Topal, G., & Kılıçog, T. (2010). Temperature dependent electrical characteristics of an organic–inorganic heterojunction obtained from a novel organometal Mn complex. Physica B: Condensed Matter, 405(9), 2329-2333.
  • Tataroğlu, A. D. E. M., Dayan, O., Özdemir, N., Serbetci, Z., Al-Ghamdi, A. A., Dere, A., ... & Yakuphanoglu, F. (2016). Single crystal ruthenium (II) complex dye based photodiode. Dyes and Pigments, 132, 64-71.
  • Soylu, M., Orak, I., Dayan, O. S. M. A. N., & Serbetci, Z. (2015). A novel photodiode based on Ruthenium (II) complex containing polydentate pyridine as photocatalyst. Microelectronics Reliability, 55(12), 2685-2688.Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 380 (2002), p. 45
  • DOĞAN, H., İkram, O. R. A. K., & YILDIRIM, N. (2017). Photovoltaic and Electrical Properties of Al/Ruthenium (II)-complex/p-Si Photodiode. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 38(2), 329-341.
  • Kern, W. (2018). Overview and evolution of silicon wafer cleaning technology. In Handbook of silicon wafer cleaning technology (pp. 3-85). William Andrew Publishing.
  • Tataroğlu, A. (2013). Comparative study of the electrical properties of Au/n-Si (MS) and Au/Si3N4/n-Si (MIS) Schottky diodes. Chinese Physics B, 22(6), 068402.
  • Wu, X., Schmidt, M. T., & Yang, E. S. (1989). Control of the Schottky barrier using an ultrathin interface metal layer. Applied physics letters, 54(3), 268-270.
  • Nicollian, E. H. (1982). JR Brews in MOS Physics and Technology.
  • Cheung, S. K., & Cheung, N. W. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied physics letters, 49(2), 85-87.
  • Norde, H. (1979). A modified forward I‐V plot for Schottky diodes with high series resistance. Journal of applied physics, 50(7), 5052-5053.
  • Bohlin, K. E. (1986). Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60(3), 1223-1224.
  • GÜÇLÜ, Ç. Ş., ÖZDEMİR, A. F., & ALDEMİR, D. A. (2019). Mo/n-Si Schottky Diyotların Akım-Voltaj ve Kapasite-Voltaj Karakteristiklerinin Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(3), 2142-2155.
  • A. Chelkowski, Dielectric Physics, Elsevier, Amsterdam, 1980, pp. 97-105.
  • Ho, P. S., Yang, E. S., Evans, H. L., & Wu, X. (1986). Electronic states at silicide-silicon interfaces. Physical review letters, 56(2), 177..
  • Wu, X., Schmidt, M. T., & Yang, E. S. (1989). Control of the Schottky barrier using an ultrathin interface metal layer. Applied physics letters, 54(3), 268-270.
  • Wilmsen, C. W.,1985. Physics and Chemistry of III-V Compound Semiconductor Interfaces. Plenum Press, New York