Hı̇perbolı̇k Soğutma Kulelerı̇nı̇n Soğutma Performansının Hesaplamalı Akışkanlar Dı̇namı̇ğı̇ ile Değerlendı̇rı̇lmesı̇

Bu makalede, çeşitli giriş koşullarına sahip hiperbolik bir soğutma kulesinin akış analizi, hesaplamalı akışkanlar dinamiği modülü kullanılarak hesaplanmıştır. Referans olarak 50 ton/saat kapasiteli bir soğutma kulesi alınmıştır. Sistemde sağ ve sol tarafta olmak üzere iki su girişi ve alttan hava girişi bulunmaktadır. Analiz sonucunda soğutma kulesinin performansını etkileyen ana faktörlerin akışkan sıcaklığı ve çevre nem değerleri olduğu görülmüştür. Ayrıca kule yüksekliğinin optimum seviyede tasarlanırsa soğutma performansının arttığı hesaplanmıştır. Hava debisinin ve akış hızının artması ile kulenin soğutma kapasitesinin arttığı gözlemlenmiştir. Bu analizde k-Ɛ enerji denklemi yöntemi kullanılmıştır.

An Evaluation of Cooling Performance Analysis of Hyperbolic Cooling Towers with Computational Fluid Dynamics

In this paper, the flow analysis of a hyperbolic cooling tower with various inlet conditions is calculated using the computational fluid dynamics module. A cooling tower with a capacity of 50 tons/hour is taken as a reference. The system has two water inlets on the left and right sides and an air inlet at the bottom. As a result of the analysis, it is seen that the main factors affecting the performance of the cooling tower are fluid temperature and ambient humidity values. It is also calculated that the cooling performance increases if the tower height is designed at the optimum level. It is observed that the cooling capacity of the tower increases with the increase in air flow rate and flow rate. The k-Ɛ energy equation method was used in this analysis.

___

  • Benton, D. J., Bowman, C. F., Hydeman, M., (2002). An Improved Cooling Tower Algorithm for the CoolTools TM Simulation Model, ASHRAE Transactions, 108.
  • Elovitz, K. M., (1994). Can Your Plant Benefit from Free Cooling?., Plant Engineering, 48(5) pp. 76-78.
  • Mulyandasari, V., (2011). Cooling Tower Selection and Sizing (Engineering Design Guideline), KLM Technology Group.
  • Stanford, H.W., (2012). HVAC Water Chillers and Cooling Towers: Fundamentals, Application, and Operation., CRC Press.,USA.
  • Hill, G.B., Pring, E., and Osborn, P.D., (1990). Cooling Towers: Principles and Practice, Butterworth-Heinemann, Oxford, UK.
  • Merkel, F., (1925). Verdunstungs kühlung, Verein Deutscher Ingenieure Verlag, Düsseldorf, Germany.
  • Kloppers, J. C., and Kröger, D., (2005). A Critical Investigation into the Heat and Mass Transfer Analysis of Counterflow Wet-Cooling Towers, International Journal of Heat and Mass Transfer, 48(3), pp. 765-777.
  • Baker, D. R., and Shryock, H. A., (1961). A Comprehensive Approach to the Analysis of Cooling Tower Performance, Journal of Heat Transfer, 83(3), pp. 339-349.
  • Bourillot, C., (1983). TEFERI: Numerical model for calculating the performance of an evaporative cooling tower, Electricite de France, 78-Chatou. Thermal Transfer and Aerodynamic Dept., Paris.
  • Benton, D.J., (1983). A numerical simulation of heat transfer in evaporative cooling towers, Tennessee Valley Authority, WR28-1-900-110. USA.
  • Majumdar, A., Singhal, A., and Spalding, D., (1983). Numerical Modeling of Wet Cooling towers—Part 1: Mathematical and Physical Models, Journal of Heat Transfer, 105(4), pp. 728-735.
  • Jaber, H., and Webb, R., (1989). Design of Cooling Towers by the Effectiveness-NTU Method, Journal of Heat Transfer, 111(4), pp. 837- 843.
  • Bergsten, B., (2009). Evaporative Cooling Tower and Chilled Beams. Design Aspects for Cooling in Office Buildings in Northern Europe. Institutionen För Energi OchMiljö, Installationsteknik, Chalmers Tekniska Högskola, pp. 978-991.
  • Poppe, M., and Rögener, H., (1991). Berechnung Von Rückkühlwerken, VDI Wärmeatlas, pp. Mj 1 bis Mj 15.
  • Kloppers, J., and Kröger, D., (2004). Cooling Tower Perform.: A Critical Evaluation of the Merkel Assump., R&D Journal, 20(1), pp. 24-29.
  • Al-Waked, R., and Behnia, M., (2006). CFD Simulation of Wet Cooling Towers," Applied Thermal Engineering, 26(4) pp. 382-395.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç