Akıllı Tarım için LoRa tabanlı Meteorolojik İzleme Sisteminin Kavramsal Tasarımı

Nesnelerin İnterneti (IoT) tabanlı akıllı tarım uygulamaları, tarımsal alanları izlemek için yeni fırsatlar sunuyor. IoT özellikli cihazları bağlamak için pratikte kullanılabilecek farklı haberleşme protokolleri vardır. Bunlar arasında düşük güç geniş alan ağı (LPWAN) tabanlı protokoller, küçük veri paketlerinin uzun mesafelerde enerji verimli iletimi nedeniyle tarımsal uygulamaların özel ihtiyaçlarına çok uygundur. Bu çalışma, çiftçileri sert hava koşullarından kaynaklı olası mahsul hasarları konusunda uyarmak için kullanılabilecek LoRa tabanlı meteorolojik izleme sisteminin kavramsal tasarımını sunmaktadır. Bu kapsamda düşük maliyetli bir meteoroloji istasyonunun donanım tasarımı detaylı olarak anlatılmıştır. Ayrıca Karaman ilinde elma çiçeklenme don hasarı riskini azaltmak için gerçekleştirilecek uygulamanın tahmini kapsama alanı Xirio Online radyo planlama aracı kullanılarak değerlendirilmiştir. Elde edilen sonuçlar, önerilen meteorolojik izleme sisteminin uygulanabilirliğini doğrulamıştır.

A Conceptual Design of LoRa based Weather Monitoring System for Smart Farming

Internet of Things (IoT) based smart farming applications opens up new opportunities for monitoring the agricultural fields. There are different communication protocols can be used in practice to connect the IoT-enabled devices. Among them, the low-power, wide area network (LPWAN) based protocols are well suited to the specific needs of agricultural applications due to their energy-efficient transmission of small data packets over long distances. This study presents the conceptual design of LoRa based weather monitoring system that can be used to warn the farmers about possible crop damages due to harsh weather conditions. The hardware design of a low-cost weather station has been explained in details. Also, the estimated coverage area of the application to be carried out in order to reduce the risk of apple flowering frost damage risk in Karaman Province, Turkey was evaluated using the Xirio Online radio planning tool. The obtained results have verified the feasibility of proposed weather monitoring system.

___

  • Andrew, R. C., Malekian, R. & Bogatinoska, D. C. (2018) IoT solutions for precision agriculture. 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 345–349, Opatija, Croatia.
  • Charania, I. & Li, X. (2020) Smart farming: Agriculture’s shift from a labor intensive to technology native industry. Internet of Things, 9(6), 1–20.
  • Elijah, O., Abd Rahman, T., Orikumhi, I., Leow, C. Y. & Hindia, M. (2018) An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet of Things Journal, 5(5), 3758–3773.
  • EOS. (2021, January 26) Weather in Agriculture: Accuracy Promotes Success. https://eos.com/blog/weather-in-agriculture
  • EPA. (2021) Climate Impacts on Agriculture and Food Supply. https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-agriculture-and-food-supply_.html
  • Gyarmati, G. & Mizik, T. (2020) The present and future of the precision agriculture. IEEE 15th International Conference of System of Systems Engineering (SoSE), 593–596, Budapest, Hungary.
  • Hatfield, J. L. & Prueger, J. H. (2015) Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10.
  • Lakhiar, I. A., Jianmin, G., Syed, T. N., Chandio, F. A., Buttar, N. A. & Qureshi, W. A. (2018) Monitoring and Control Systems in Agriculture Using Intelligent Sensor Techniques: A Review of the Aeroponic System. Journal of Sensors, 2018, 1–18.
  • Li, C. & Niu, B. (2020) Design of smart agriculture based on big data and Internet of things. International Journal of Distributed Sensor Networks, 16(5), 1–11.
  • Lohchab, V., Kumar, M., Suryan, G., Gautam, V. & Das, R. K. (2018) A Review of IoT based Smart Farm Monitoring,” Second International Conference on Inventive Communication and Computational Technologies (ICICCT), 1620-1625, Coimbatore, India.
  • Microchip Technology Inc. (2021) RN2483 Low-Power Long Range LoRa® Technology Transceiver Module Datasheet. http://ww1.microchip.com/downloads/en/DeviceDoc/RN2483-Low-Power-Long-Range-LoRa-Technology-Transceiver-Module-Data-Sheet-DS50002346D.pdf
  • Miorandi, D., Sicari, S., De Pellegrini, F. & Chlamtac, I. (2012) Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10, 1497–1516.
  • RAKwireless. (2021) RAK831 WisLink LPWAN Concentrator. https://store.rakwireless.com/products/rak831-gateway-module?variant=39942881083590
  • Rubio, V. S. & Más, F. R. (2020) From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy, 10(2), 1–21.
  • TE Connectivity. (2017) MS8607-02BA01 PHT Combination Sensor Datasheet. https://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=Data+Sheet%7FMS8607-02BA01%7FB3%7Fpdf%7FEnglish%7FENG_DS_MS8607-02BA01_B3.pdf%7FCAT-BLPS0018
  • The Food and Agriculture Organization (FAO) of the United Nations. (2011), The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk.
  • The Food and Agriculture Organization (FAO) of the United Nations. (2017), [2] Information and Communication Technology (ICT) in Agriculture: A Report to the G20 Agricultural Deputies.
  • Vining, K. C. (1990) Effects of weather on agricultural crops and livestock: an overview. International Journal of Environmental Studies, 36(1-2), 27–39.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç