Akımsız Ni-P-W Kompozit Kaplamalarda PTFE Konsantrasyonunun Sertlik ve Aşınma Üzerinde Etkisi

Bu çalışmada politetrafloroetilen (PTFE) takviyeli Ni-P-W kompozit kaplamalar alkalin bir banyoda akımsız yöntemle üretilmiştir. Kompozit kaplamalar için PTFE konsantrasyonu sırası ile 5, 10 ve 20 g/L seçilmiştir. Üretilen kaplamaların yüzey mikroyapısı Taramalı Elektron Mikroskobu (SEM) ile kimyasal analizi ise X-Işınları Kırınımı (XRD) yöntemiyle yapılmıştır. Farklı PTFE konsantrasyonları ile üretilen kompozit kaplamaların ortalama mikro sertlik değerleri sırasıyla 513±22 HV, 494±17 HV ve 392±25 HV olarak ölçülmüştür. Oda sıcaklığında kuru ortamda yapılan aşınmalarda en düşük sürtünme katsayısı 0.232 µ ile PTFE konsantrasyonun 10 g/L olduğu kaplamada görülmüştür. Konsantrasyonun 20 g/L çıkarılmasıyla ortalama sürtünme katsayısında yaklaşık % 60 oranında bir artışla 0.375 µ olmuştur.

Effect of PTFE Concentration on Microhardness and Wear Behavior in Ni-P-W-PTFE Composite Coatings by Electroless Deposition

In this study, polytetrafluoroethylene (PTFE) reinforced Ni-P-W composite coatings were produced by electroless method in an alkaline bath. For the composite coatings, the PTFE concentration was chosen as 5, 10 and 20 g/L, respectively. The surface microstructure of the produced coatings was made by Scanning Electron Microscope (SEM) and chemical analysis was done by X-Ray Diffraction (XRD) method. The mean microhardness values of the composite coatings produced with different PTFE concentrations were measured as 513±22 HV, 494±17 HV and 392±25 HV, respectively. The lowest coefficient of friction in wear at room temperature was found to be 0.232 µ in the coating with a PTFE concentration of 10 g/L. By increasing the concentration by 20 g/L, the average friction coefficient increased by approximately 60% to 0.375 µ.

___

  • Akyol, A., Algul, H., Uysal, M., Akbulut, H., & Alp, A. (2018). A novel approach for wear and corrosion resistance in the electroless Ni-P-W alloy with CNFs co-depositions. Applied Surface Science, 453(December 2017), 482–492. https://doi.org/10.1016/j.apsusc.2018.05.152
  • Akyol, A., Algul, H., Uysal, M., Akbulut, H., & Alp, A. (2018). A novel approach for wear and corrosion resistance in the electroless Ni-P-W alloy with CNFs co-depositions. Applied Surface Science, 453(December 2017), 482–492. https://doi.org/10.1016/j.apsusc.2018.05.152
  • Akyol, Abdülkadir, Algül, H., Bilaç, O., Ulu, S., Gül, H., Uysal, M., Çay, Y., & Alp, A. (2019). Elektrolitik Sert Metal Kaplamaya Alternatif Çevreye Duyarlı Ni-P Kaplamaların 6061 Serisi Alüminyum Altlık Üzerine Akımsız Yöntemle Biriktirilmesinde Sodyum hipofosfit, Sıcaklık ve Zamanın Etkisi. Academic Platform Journal of Engineering and Science, 7(3), 442–448. https://doi.org/10.21541/apjes.478232
  • Aslan, S., & Duru, E. (2021). Microstructure and Wear Properties of Electrodeposited Ni-B-Al2O3 Composite Coating on Low Carbon Steel at Elevated Temperature. Journal of Materials Engineering and Performance, Ref 8. https://doi.org/10.1007/s11665-021-06290-2
  • Balaraju, J. N., & Rajam, K. S. (2005). Electroless deposition of Ni–Cu–P, Ni–W–P and Ni–W–Cu–P alloys. Surface and Coatings Technology, 195(2–3), 154–161. https://doi.org/10.1016/j.surfcoat.2004.07.068
  • Czagány, M., Baumli, P., & Kaptay, G. (2017). The influence of the phosphorous content and heat treatment on the nano-micro-structure, thickness and micro-hardness of electroless Ni-P coatings on steel. Applied Surface Science, 423, 160–169. https://doi.org/10.1016/j.apsusc.2017.06.168
  • Doğan, F., Duru, E., Uysal, M., Akbulut, H., & Aslan, S. (2020). Investıgatıon of mechanıcal and trıbologıcal characterıstıcs of ni-b coatıngs deposıted on steel. Journal of Boron, 6(1), 209–215. https://doi.org/10.30728/boron.762584
  • Doğan, F., Uysal, M., Algül, H., Duru, E., Akbulut, H., & Aslan, S. (2020). Optimization of pulsed electro co-deposition for Ni-B-TiN composites and the variation of tribological and corrosion behaviors. Surface and Coatings Technology, 400(June), 126209. https://doi.org/10.1016/j.surfcoat.2020.126209
  • Duru, E., Doğan, F., Uysal, M., Akbulut, H., & Aslan, S. (2021). Optimization of Ni-B coating bath and effect of DMAB concentration on hardness and wear. Surfaces and Interfaces, 22(June 2020), 100880. https://doi.org/10.1016/j.surfin.2020.100880
  • Feng, L., Zhang, Y., Wen, C., Lı, S., Lı, J., Cheng, D., Baı, J., Cuı, Q., & Zhang, L. (2021). Effect of initial deposition behavior on properties of electroless Ni–P coating on ZK60 and ME20 magnesium alloys. Transactions of Nonferrous Metals Society of China, 31(8), 2307–2322. https://doi.org/10.1016/S1003-6326(21)65656-X
  • Ger, M.-D., & Hwang, B. J. (2002). Effect of surfactants on codeposition of PTFE particles with electroless Ni-P coating. Materials Chemistry and Physics, 76(1), 38–45. https://doi.org/10.1016/S0254-0584(01)00513-2
  • Gültekin, D., Duru, E., & Akbulut, H. (2021). Improved wear behaviors of lead-free electroless Ni[sbnd]B and Ni-B/CeO2 composite coatings. Surface and Coatings Technology, 422(July). https://doi.org/10.1016/j.surfcoat.2021.127525
  • Haag, S., Burgard, M., & Ernst, B. (2006). Pure nickel coating on a mesoporous alumina membrane: Preparation by electroless plating and characterization. Surface and Coatings Technology, 201(6), 2166–2173. https://doi.org/10.1016/j.surfcoat.2006.03.023
  • Huang, Y. S., Zeng, X. T., Annergren, I., & Liu, F. M. (2003). Development of electroless NiP–PTFE–SiC composite coating. Surface and Coatings Technology, 167(2–3), 207–211. https://doi.org/10.1016/S0257-8972(02)00899-X
  • Luo, H., Leitch, M., Zeng, H., & Luo, J.-L. (2018). Characterization of microstructure and properties of electroless duplex Ni-W-P/Ni-P nano-ZrO2 composite coating. Materials Today Physics, 4, 36–42. https://doi.org/10.1016/j.mtphys.2018.03.001
  • Matik, U., & Citak, R. (2011). Düşük Fosforlu Akımsız Ni - P Kaplanmış AISI 1020 Çeliğinin Adhesiv A şınma Karakteristikleri nin İncelenmesi. May. Ramalho, A., & Miranda, J. C. (2005). Friction and wear of electroless NiP and NiP+PTFE coatings. Wear, 259(7–12), 828–834. https://doi.org/10.1016/j.wear.2005.02.052
  • Sürdem, S., Eseroğlu, C., & Çitak, R. (2019). A parametric study on the relationship between NaBH 4 and tribological properties in the nickel-boron electroless depositions. Materials Research Express, 6(12), 125085. https://doi.org/10.1088/2053-1591/ab5beb
  • Ürdem, Ş., Duru, E., Algül, H., Uysal, M., & Akbulut, H. (2021). Evaluation of high temperature tribological behavior of electroless deposited NiB–Al2O3 coating. Wear, 482–483(May), 203960. https://doi.org/10.1016/j.wear.2021.203960
  • Uysal, M., Algül, H., Duru, E., Kahraman, Y., Alp, A., & Akbulut, H. (2021). Tribological properties of Ni–W–TiO2–GO composites produced by ultrasonically–assisted pulse electro co–deposition. Surface and Coatings Technology, 410(February), 126942. https://doi.org/10.1016/j.surfcoat.2021.126942
  • Vitry, V., & Delaunois, F. (2015). Nanostructured electroless nickel-boron coatings for wear resistance. In Anti-Abrasive Nanocoatings (pp. 157–199). Elsevier. https://doi.org/10.1016/B978-0-85709-211-3.00007-8
  • Yildiz, R. A., Genel, K., & Gulmez, T. (2021). Effect of electroless Ni-B and Ni-W-B coatings on the corrosion-fatigue behaviour of 7075 Al alloy. International Journal of Fatigue, 144(July 2020), 106040. https://doi.org/10.1016/j.ijfatigue.2020.106040