Gıda teknolojisinde kullanılan yüksek basınç sistemleri ve mikroorganizmalar üzerine yüksek basıncın etkisi

Yüksek basınç (YB) uygulaması, gıdaların özelliklerini değiştirmeksizin mikroorganizmaları ve enzimleri inaktive edebilme özelliğinden dolayı geleneksel termal koruma yöntemlerine alternatif bir metot haline gelmiştir. YB uygulaması mikroorganizmaların hücre zarını, hücrenin yapısını veya biyokimyasal reaksiyonlarını değiştirerek inaktivasyonuna sebep olmaktadır. Hücrenin inaktivasyonuna yol açan diğer önemli bir faktörde, YB’nin etkisiyle mikroorganizmalardaki enzimlerin denature olmasıdır. Besin kaynaklı patojenlerin YB’ye dirençleri farklıdır. Genellikle Gram-negatif bakteriler Gram-pozitif bakterilerden, ökaryotik mikroorganizmalar prokaryotik mikroorganizmalardan basınca karşı daha duyarlıdırlar. Bakteri sporlarının inaktivasyonu için basınç ve sıcaklığın birlikte uygulanması uygundur. Mikroorganizmanın tipi, gelişme fazı, uygulanan basıncın seviyesi, süresi, sıcaklığı, gıdanın bileşimi, pH ve su aktivitesi basınçla mikroorganizmaların inaktivasyonu üzerinde etkili faktörlerdir. Bu makalede, gıdalarda yüksek basınç uygulamaları ve bu gıdaların mikrobiyal niteliklerine etkileri incelenmiştir.

High pressure systems using in food technology and effect on microorganisms of High pressure

High pressure (HP) application has been an alternative method to conventional thermal preservation processes due to its ability to inactivate microorganisms and enzymes while the quality attributes of foods remain unchanged. HP aplication cause inactivation of microorganisms by changing cell membrane, morphology or biochemical reactions of cell. Another important factor leading to the cell inactivation is the denaturation of enzymes in microorganisms by HP. Resistance to HP of food-borne pathogens are different. In general Gram-negative bacteria are more sensitive to pressure than Gram-positive bacteria and eucaryotic microorganisms are generally more sensitive to pressure than procaryotic microorganisms. It is suitable that pressure and temperature are used together for inactvation of bacterial spores. Inactivation of microorganisms depend on on factors such as type, exponential phase of microorganism, temperature, pressure time and level, composition, pH and water activite of food. In this article, HP applications on foods and effects on microbiyal quality of foods of HP applications were examined.

___

  • Alpas, H., Kalchayanand, N., Bozoğlu, F., Sikes, A., Dunne, C.P. and Ray, B., 1999. Variation in resistance to hydrostatic pressure among strains of food-borne pathogens. Applied and Environmental Microbiology, 65, 9, 4248–4251.
  • Anonymous, 2006a. http://www.jxau.edu.cn/shipin/news/THES IS1.DOC (20.04.2006).
  • Anonymous, 2007b. http://grad.fst.ohiostate. edu/hpp/FAQ.htm (12.08.2007).
  • Ardia, A., 2004. Process considerations on the application of high pressure treatment at elevated temperature levels for food preservation. Doktor der ingenieurwissenschaften, Fakultät IIIProzesswissenschaften der Technischen
  • Arqués, L., Gadre, S., Gaya, P., Medina, M. and Nuñez, M., 2006. Short Communication: Inactivation of microbial contaminants in raw milk La Serena cheese by highpressure treatments. Journal of Dairy Science, 89, 888–891.
  • Balci, A. T. and Wilbey, R. A., 1999. Highpressure processing of milk – the first 100 years in the development of a new technology. International Journal of Dairy Technology, 52, 149–155.
  • Benito, A., Ventoura, G., Casadei, M., Robinson, T. and Mackey, B., 1999. Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses. Applied and Environmental Microbiology, 65, 4, 1564–1569.
  • Black, E. P., Huppertz, T., Kelly, A. L. and Fitzgerald, G. F., 2006. Influence of milk constituents on high-pressure-induced inactivation of Listeria innocua in milk. International Dairy Journal (in press).
  • Bozoğlu, F., Alpas, H. and Kaletunç, G., 2004. Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunology and Medical Microbiology, 40, 243–247.
  • Buckow, R., 2006. Pressure and Temperature Effects on the Enzymatic Conversion of Biopolymers.Doctrate thesis, Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Berlin.
  • Buranasompob, A., 2005. Kinetics of the inactivation of microorganisms by water insoluble polymers with antimicrobial activity. Doktor der ingenieurwissenschaften, Fakultät III-Prozesswissenschaften der Technischen Universität, Berlin.
  • Cheftel, J.C. and Culioli, J., 1997. Effects of high pressure on meat: A review. Meat Science, 46, 211–236.
  • Chen, H., Hoover, D.G., 2003. Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. International Journal of Food Microbiology. 87, 161–171.
  • Chen, H., 2007. Use of linear, Weibull, and loglogistic functions to model pressure inactivation of seven foodborne pathogens in milk. J. Food Microbiol. 24, 197–204.
  • Cléry-Barraud, C., Gaubert, A., Mason, P. and Vidal, D., 2004. Combined effects of high hydrostatic pressure and temperature for inactivation of Bacillus anthracis spores. Applied and Environmental Microbiology, 70, :635–637.
  • De Lamballerie-Anton, M., Taylor, R. G. and Culioli, J., 2002. High pressure processing of meat. Part 3, 16, Meat Processing-Improving Quality, Ed: Kerry, J., Kerry, J. and Ledward. W., Andrew Publishing/Noyes, 16. Section.
  • Diels, A.M.J., Wuytack, E.Y. and Michiels, C.W., 2003. Modelling inactivation of Staphylococcus aureus and Yersinia enterocolitica by high-pressure homogenisation at different temperatures. International Journal of Food Microbiology, 87, 55–62.
  • Donaghy, J.A., Linton,M., Patterson M.F. and Rowe M.T., 2007. Effect of high pressure and pasteurization on Mycobacterium avium ssp. paratuberculosis in milk. Letters in Applied Microbiology, 45, 2, 154–159.
  • Doona, C.J., Feeherry, F.E. and Ross, E.W., 2005. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing. International Journal of Food Microbiology, 100, 1–3, 21–32.
  • Doyle, M.E., 1999. Literature survey of the various techniques used in Listeria intervention. Fri Briefings. Food Research Institute, University of Wisconsin Madison.
  • FDA., 2000. Kinetics of microbial inactivation for alternative food processing technologies high pressure processing. http://www.cfsan.fda.gov/~comm/ifthpp. html (25.04.2006).
  • FDA., 2001. Evaluation and definition of potentially hazardous foods. Effect of preservation technologies on microbial inactivation in foods. Chapter 5., http://www.cfsan.fda.gov/~comm/ift4-5.html (25.04.2006).
  • Fonberg-Broczek, M., Windyga, B., Szczawiñski, J., Szczawiñska, M., Pietrzak, D. and Prestamo, G., 2005. High pressure processing for food safety. Acta Biochimica Polonica, 52, 3, 721–724.
  • Freeman, M., 1998. Equipment & system for high pressure food science bioscience and chemistry, Ed: Isaacs, N.S., Royal Society of Chemistry, Cambridge, United Kingdom, 501-507.
  • Gao, Y. L., Wang, Y. X. and Jiang, H. H., 2005. Effect of high pressure and mild heat on Staphylococcus aureus in milk using response surface methodology. Process Biochemistry, 40, 1849–1854.
  • Garcia-Risco, M. R., Cortes, E., Carrascosa, A. V. and Lopez- Fandino, R., 1998. Microbiological and chemical changes in high-pressure-treated milk during refrigerated storage. Journal of Food Protection, 61, 735–737.
  • Garriga, M., Aymerich, M.T., Costa, S., Monfort, J.M., and Hugas, M., 2002. Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiology, 19, 509–518.
  • Garriga, M., Grèbol, N., Aymerich, M.T., Monfort, J.M. and Hugas, M., 2004. Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innovative Food Science and Emerging Technologies, 5, 451–457.
  • Gross, M., Lehle, K., Jaenicke, R. and Nierhaus, K. H.,1993. Pressure-induced dissociation of ribosomes and elongation cycle intermediates: Stabilising conditions and identification of the most sensitive functional state. European Journal of Biochemistry, 218, 463–468.
  • Hartmann, C. and Delgado, A., 2004. Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure. Journal of Biomechanics, 37, 977–987.
  • Hauben, K.J.A., Bartlett, D.H., Soontjens, C.C., Cornelis, F., Wuytack, E.Y. and Michiels, C.W., 1997. Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Applied and Environmental Microbiology, 63, 3, 945–950.
  • Hayakawa, I., Kanno, T., Tomita, M. and Fujio, Y., 1994. Application of high pressure for spore inactivation and protein denaturation. Journal of Food Science, 59, 1, 159–163.
  • Hayman, M. M., Anantheswaran, R. C. and Knabel, S., J., 2007. The effects of growth temperature and growth phase on the inactivation of Listeria monocytogenes in whole milk subject to high pressure processing. International Journal of Food Microbiology,115, 2, 220-6..
  • He, H., Adams, R.M., Farkas, D. F. and Morissey, M.T., 2002. Use of High pressure Processing for Oyster Shucking and Shelf-Life Extension, Journal of Food Science. Vol. 67, 2, 640–645.
  • Hendrickx, M., Ludikhuyze, L., Van Den Broeck, I. and Weemaes, C., 1998. Effects of high pressure on enzymes related to food quality. Trends Food Science & Technology, 9, 197–203.
  • Hogan, E., Kelly, A.L. and Sun, D.W., 2005. High Pressure Processing of Foods:An Overview. Ed: Sun, D.W., Food Science and Technology, International Series. High Pressure Processing. Part 1, 1–27.
  • Hoover, D.G., Metrick, C., Papineau, A.M., Farkas, D.F. and Knorr, D., 1989. Biological effects of high hydrostatic pressure on food microorganisms. Food Technology, 43, 99–107.
  • Hugas, M., Garriga, M. and Monfort, J.M., 2002. New mild technologies in meat processing: high pressure as a model technology. Meat Science, 62, 359–371.
  • Huppertz, T., Smiddy, M. A., Upadhyay, V. K. and Kelly, A. L., 2006. High-pressureinduced changes in bovine milk: a review. International Journal of Dairy Technology, 59 (2), 58-66.
  • Isbarn, S., Buckow, R., Himmelreich, A., Lehmacher, A.,and Heinz, V.,2007. Inactivation of avian influenza virus by heat and high hydrostatic pressure. Journal food Protect, 70, 3, 667-673.
  • Jung, S., Ghoul, M. and De Lamballerie-Anton, M., 2003. Influence of high pressure on the color and microbial quality of beef meat. Lebensmittel-Wissenschaft und – Technologie, 36, 625–631.
  • Kalchayanand, N., Ray, B., Sikes, A. and Dunne, C.P., 1998. Shelf-life and safety enhancement of processed meat by hydrostatic pressure in combination with moderate temperature and biopreservatives, phase IV. Technical report, U.S. Army Soldier Systems Command Natick Research, Laramie, Wyoming, http://www.stormingmedia.us/28/2846/a28 4653.html (14.06.2006).
  • Karatzas, K. A. G. and Bennik, M.H.J., 2002. Characterization of a Listeria monocytogenes scott a isolate with high tolerance towards high hydrostatic pressure. Applied and Environmental Microbiology, 68,7, 3183–3189.
  • Korzeniowski, W., Jankowska, B., and Kwiatkowska, A., 1999. The effect of high pressure on some technological properties of pork. Electronic Journal of Polish Agricultural Universities, Food Science and Technology, 2, 2.
  • Koseki, S. and Yamamoto, K., 2007a. A novel approach to predicting microbial inactivation kinetics during high pressure processing. International Journal of Food Microbiology, 116, 2, 275–282.
  • Koseki, S. and Yamamoto, K., 2007b. Modelling the bacterial survival/death interface induced by high pressure processing. International Journal of Food Microbiology, 116, (1), 136–143
  • Koutchma, T., Guo, B., Patazca, E. and Parisi, B., 2006. High pressure-high temperature inactivation of Clostridium sporogenes spores: From kinetics to process verification. Journal of Food Science Engineering, 28, 610–629.
  • Lechowich, R.V., 1993. Food safety implications of high hydrostatic pressure as a food processing method. Food Technology, 47(6), 170–172.
  • Linton, M., Mcclements, J.M.J. and Patterson, M.F., 2001. Inactivation of pathogenic Escherichia coli in skimmed milk using high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 2, 99–104.
  • Linton, M., Mcclements, J.M.J. and Patterson, M.F., 2003. Changes in the microbiological quality of shellfish, brought about by treatment with high hydrostatic pressure. International Journal of Food Science and Technology, 38, 713–727.
  • Linton, M., Mcclements, J.M.J. and Patterson, M.F., 2004. Changes in the microbiological quqlity of vacumpackaged, minced chicken treated with high hydrostatic pressure. International Journal of Food Science and Technology, 5, 151–159.
  • López-Pedemonte, T., Roig-Sagués, A. X., De Lamo, S. , Gervilla, R. and Guamis, B., 2007. High hydrostatic pressure treatment applied to model cheeses made from cow‟s milk inoculated with Staphylococcus aureus. Food Control, 18, 5, 441–447.
  • Ma, H.J. and Ledward, D.A., 2004. High pressure/thermal treatment effects on the texture of beef muscle. Meat Science, 68, 347–355.
  • Mañas, P. and Mackey, B.M., 2004. Morphological and physiological changes induced by high hydrostatic pressure in exponential- and stationary-phase cells of Escherichia coli: Relationship with cell death. Applied and Environmental Microbiology, 70, 3, 1545–1554.
  • Mañas, P. and Pagán, R., 2005. Microbial inactivation by new technologies of food preservation, a review. Journal of Applied Microbiology, 98, 1387–1399.
  • McClements, J. M. J., Patterson, M. F. and Linton, M. 2001. The effect of growth stage and growth temperature in high hydrostatic pressure inactivation of some psychotropic bacteria in milk. Journal of Food Protection, 64, 514–522.
  • Mertens, B. and Deplace, G., 1993. Engineering aspects of high-pressure technology in the food industry. Food Technology, 47, 6,164–167.
  • Moerman, F., 2005. High hydrostatic pressure inactivation of vegetative microorganisms, aerobic and anaerobic spores in pork marengo, a low acidic particulate food product. Meat Science, 69, 225–232
  • Molina-Hoppner, A., Sato, T., Kato, C., Ganzle, M. G. and Vogel, R. F., 2003. Effects of pressure on cell morphology and division of lactic acid bacteria. Extremophiles, 7, 511–516.
  • NACMCF., 2004. Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. Washington, DC.
  • Niven, G.W., Miles, C.A. and Mackey, B.M., 1999. The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: An in vivo study using differential scanning calorimetry. Microbiology, 145, 419–425.
  • Nünnerich, P., 2005. Hochdruckbehandlung von Lebensmitteln. UHDE High pressure Technologies GmbH. http://www.umsicht.fhg.de/veranstaltungen
  • Pandey, P. K., Ramaswamy, H. S. and Idziak, E., 2002. High pressure destruction kinetics of indigenous microflora and Escherıciıa coli in raw milk at two temperatures. Journal of Food Process Engineering, 26, 265–283.
  • Park, S.W., Sohn, K.H., Shin, J.H., and Lee, H.J., 2001. High hydrostatic pressure inactivation of Lactobacillus viridescens and its effects on ultrastructure of cells. International Journal of Food Science and Technology, 36, 775–781.
  • Patterson, M.F., 2005. Microbiology of pressure-treated foods: A review. Journal of Applied Microbiology, 98, 1400–1409.
  • Pereda, J., Ferragut, V., Quevedo, J. M., Guamis, B. and Trujillo, A. J., 2007. Effects of Ultra-High Pressure Homogenization on Microbial and Physicochemical Shelf Life of Milk. Journal of Dairy Science, 90, 1081–1093.
  • Perrier-Cornet, J.M., Hayert, M. and Gervais, P., 1999. Yeast cell mortality related to a high-pressure shift: Occurrence of cell membran permabilization. Journal of Applied Microbiology, 87, 1–7.
  • Ritz, M., Tholozan, J.L., Federighi, M. and Pilet, M.F., 2001. Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Applied and Environmental Microbiology, 67, 5, 2240–2247.
  • Ross, A. I. V., Griffiths, M. W., Mittal, G. S. and Deeth, H. C., 2003. Combining nonthermal Technologies to control foodborne microorganisms. International Journal of Food Microbiology, 89, 125–138.
  • Rovere, P., Gola, S., Maggi, A., Sacamuzza, N. and Miglioli, L., 1998. Studies on bacterial spores by combined high pressure-heat treatments: Possibility to sterilize low acid foods. High Pressure Food Science, Bioscience and Chemistry, Ed: Isaacs N.S., Royal Society of Chemistry, Cambridge, United Kingdom, 354-363.
  • Shearer, A. E. H., Dunne, C. P., , A. and Hoover, D. G., 2000. Bacterial spore inhibition and inactivation in foods by pressure, chemical reservatives and mild heat. Journal of Food Protection, 63, 1503–1510.
  • Singh, R.P., 2001. Technical elements of new and emerging non-thermal food technologies. http://www.fao.org/ag/ags/agsi/nonthermal /nnthermal_1.htm
  • Smiddy, M. A., Martin, J. E., Huppertz, T. and Kelly, L. A, 2007. Microbial shelf-life of high-pressure-homogenised milk. International Dairy Journal, 17, 29–32.
  • Suzuki, A., Kim, K., Tanji, H. and Ikeuchi, Y., 1998. Effects of high hydrostatic pressure on postmortem muscle. Recent Research Developments in Agricultural and Biological Chemistry, 2, 307–331.
  • Suzuki, A., 2005. High pressure effects on protein structure, and its application to food processing. Foods and Food. Ingredients Journal of Japan, 210, 1, 20–28.
  • Tewari, G., Jayas, D.S. and Holley, R.A., 1999. High pressure processing of foods: An overview. Science Des Aliments, 19, 619– 661.
  • Usajewicz, I. and Nalepa, B., Survival of 2006. Escherichia coli O157:H7 in Milk Exposed to High Temperatures and High Pressure. Food Technology and biotechnology. 44, 1, 33–39.
  • Van Opstal, I., Bagamboula, C. F., Vanmuysen, S. C. M., Wuytack, E. Y. and Michiels, C. W., 2004. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. International Journal of Food Microbiology, 92, 227–234.
  • Wouters, P.C, Glaasker, E. and Smelt, J.P.P.M., 1998. Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Applied and Environmental Microbiology, 64, 509–514.
  • Wuytack, E.Y., Boven, S. and Michiels, C.W., 1998. Comparative study of pressureinduced germination of Bacillus subtilis spores at low and high pressures. Applied and Environmental Microbiology, 64, 9, 3220–3224.
  • Wuytack, E.Y., Soons, J., Poschet, F. and Michiels, C.W., 2000. Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Applied and Environmental Microbiology, 66, 1, 257–261.
  • Wuytack, E.Y. and Michiels, C.W., 2001. A study on the effects of high pressure and heat on Bacillus subtilis spores at low pH. International Journal of Food Microbiology, 64, 333–341.
  • Yamamoto, K., Matsubara, M. , Ibaraki, T., Kawasaki, S., Bari, M: L:and Kawamoto, S., 2005. Modeling the pressure inactivation dynamics of Escherichia coli. Brazilian Journal of Medical and Biological Research, 38, 1253–1259.
  • Yuste, J., Mor-Mur, M., Capellas, M., Guamis, B. and Pla, R., 1998. Microbiological quality of mechanically recovered poultry meat treated with high hydrostatic pressure and nisin. Food Microbiology, 15, 407–414.
  • Yuste, J., Mor-Mur, M., Capellas, M., and Pla, R., 1999a. Listeria innocua and aerobic mesophiles during chill storage of inoculated mechanically recovered poultry meat treated with high hydrostatic pressure. Meat Science, 53: 251–257.
  • Yuste, J., Mor-Mur, M., Capellas, M. and Pla, R., 1999b. Pressure- vs. heat-induced bacterial stress in cooked poultry sausages: A preliminary study. Letters in Applied Microbiology, 29, 233–237.
  • Yuste, J., Pla, R., Capellas, M. and Mor-Mur, M., 2000a. Bacterial sensitivity to high hydrostatic pressure in mechanically recovered poultry meat-minor baroprotective role of fat content. Fleischwirtschaft International, 3, 51–54.
  • Yuste, J., Pla, R., Capellas, M., Ponce, E. and Mor-Mur, M., 2000b. High-pressure processing applied to cooked sausages: bacterial populations during chilled storage. Journal of Food Protection, 63, 8, 1093–1099.
  • Yuste, J., Pla, R. and Mor-Mur, M., 2000c. Salmonella enteritidis and aerobic mesophiles in inoculated poultry sausages manufactured with high-pressure processing. Letters In Applied Microbiology, 31, 374–377.
  • Yuste, J., Cappellas, M., Pla, R., Fung, D.Y.C. and Mor-Mur, M., 2001a. High pressure processing for food safety and preservation: A Review. Journal of Rapid Methods and Automation in Microbiology, 9, 1–10.
  • Yuste, J., Pla, R., Capellas, M., Sendra, E., Beltran, E. and Mor-Mur, M., 2001b. Oscillatory high pressure processing applied to mechanically recovered poultry meat for bacterial inactivation. Journal of Food Science, 66, 482–484.
  • Yuste, J., Pla, R., Beltran, E. and Mor-Mur, M., 2002a. High pressure processing at subzero temperature: Effect on spoilage microbiota of poultry. International Journal of High Pressure Research, 22, 673–676.
  • Yuste, J., Pla, R., Capellas, M. and Mor-Mur, M., 2002b. Application of high pressure processing and nisin to mechanically recovered poultry meat for microbial decontamination. Food Control, 13, 451–455.
  • Yuste, J., Cappellas, M., Pla, R., Llorens, S., Fung, D.Y.C. and Mor-Mur, M., 2003. Use of conventional media and thin agar layer method for recovery of foodborne pathogens from pressure-treated poultry products. Journal of Food Science, 68, 7, 2321–2324.
  • Yuste, J., Cappellas, M., Pla, R., Fung, D.Y.C. and Mor-Mur, M., 2004. Inactivation and sublethal injury of foodborne pathogens by high pressure processing: evaluation with conventional media and thin agar layer method. Food Research International, 37, 861–866.
  • Zimmerman, F. and Bergman, C., 1993. Isostatic high-pressure equipment for food preservation. Food Technology, 47, 6, 162–163.
  • Zorba, Ö. ve Kurt, Ş., 2005. Yüksek basınç uygulamalarının et ve et ürünleri kalitesi üzerine etkisi. YYÜ Veteriner Fakültesi Dergisi, 16, 1, 71–76.